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Areanalysis of the numerosity judgment data described in T. J. Palmeri (1997) showed that the
mean latency exhibits clear deviations from the power function as predicted by the component
power laws (CMPL) theory of strategy shifting (T. C. Rickard, 1997). The variance of the
latency systematically increases and then decreases with practice for large numerosities, a
result that is also consistent with the CMPL theory. Neither of these results are predicted by
existing versions of either the exemplar-based random walk or the instance theories. These
findings suggest that numerosity judgment, like other skills, reflects one at a time rather than
concurrent execution of algorithmic and memory retrieval strategies.

Palmeri (1997) reported results of three numerosity
judgment experiments designed to test the exemplar-based
random walk (EBRW) model (see Nosofsky & Palmeri,
1997) of categorization and automaticity, which synthesizes
critical components of Nosofsky’s (1986) generalized con-
text model and Logan’s (1988) instance theory of auto-
matization. The experiments involved as many as 208
repeated presentations, over multiple sessions, of sets of
randomly constructed patterns of 6 to 11 dots. The task was
to determine the numerosity as quickly as possible. Overall,
the EBWR model provided an impressive account of the
data. Consistent with this theory, (a) there was clear
evidence of a transition with practice from using a sequential
dot counting strategy to retrieval of the answer directly from
memory, (b) the mean reaction time (RT) depended in part
on the similarity of each stimulus to other stimuli, and (c)
speedup with practice appeared to follow a three parameter
power function,

RIT=a+b-N5, @
where N is number of practice trials, @ is asymptotic RT, and b
and c are scaling parameters (see Newell & Rosenbloom, 1981).

Both the EBRW and instance theories assume that memory
retrieval and the algorithm race independently on each
performance trial. Rickard (1997) proposed an alternative
component power law (CMPL) model that embodies the
opposite assumption that memory retrieval and the algo-
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sets available.
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rithm cannot be executed in parallel. Rather, one each trial,
either memory retrieval or the algorithm, but not both, are
executed.! Rickard (1997) showed through mathematical
analysis and simulation that this assumption, combined with
auxiliary assumptions, yields a model that predicts unique
power function speedup in mean RT within each strategy,
but systematic deviations from the power function in the
overall data (i.e., when collapsed across strategy).

The CMPL theory was originally developed to account for
arithmetic and related tasks. It is an open question whether
the predictions of that theory hold for other tasks, like
numerosity judgment, that differ from arithmetic in several
nontrivial ways. As one example, the counting algorithm
used in numerosity judgment is probably not particularly
challenging, nor is it very demanding on working memory.
Under such conditions, there may be sufficient resources to
execute algorithm and retrieval strategies simultaneously. In
contrast, the pound arithmetic task used by Rickard (1997)
involves execution of a multistep arithmetic algorithm that
may be subjectively more demanding and clearly imposes at
least some load on working memory. Under these condi-
tions, participants may not be able to, or may choose not to,
execute both strategies in parallel. This fact, considered
along with other task differences, makes it far from obvious
that the CMPL theory will generalize to numerosity
judgment.

CMPL Predictions Expressed as Equations

The strategy execution assumptions of the CMPL theory
imply a mixture of two distinct strategies on each

! Siegler (1988) and Lemaire and Siegler (1995) made similar
assumptions in their theory of children’s strategy choices in
arithmetic and related domains.
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block of practice. Speedup in the overall mean RT is thus
governed by a mixture equation (Townsend & Ashby,
1983),

RT = RT ugorithmy * (1 = P) + RT etrievayy - (P)s 2)

where p is the proportion of trials on which the retrieval
strategy is used on a’ given practice block, 1 — p is the
proportion of trials on which the algorithm strategy is used,
and RT ygorihm) and RTgepievary describe the mean RTs for
algorithm and retrieval strategies, respectively, as a func-
tion of practice. Speedup reflects both faster execution of
each strategy with practice and a steady increase in the
proportion of trials on which the faster retrieval strategy is
used.

Simulation results of Rickard (1997) showed that, given a
reasonable set of auxiliary assumptions, the mean RTs for
each strategy follow power functions,

RT igorithmy = b1 - (N + pre)™!, and )
RT(retrieval) =b2-N _02, (4)

where pre is previous learning, which must strictly be
included in the model for the algorithm. For simplicity,
asymptotes can be assumed to be zero with negligible
consequences in most cases (see Rickard, 1997; Newell &
Rosenbloom, 1981).

The CMPL simulation model discussed by Rickard (1997)
was designed for arithmetic and related tasks. New simula-
tion results described in the Appendix demonstrate that a
version of the model adapted to the numerosity judgment
task makes the same basic quantitative predictions. The
results in the Appendix also demonstrate that the simulation
prediction for p, the proportion of trials on which the
algorithm strategy is used as a function of practice, can be
closely approximated by a simple one parameter negative
exponential function,

p=1—¢e @D, 6)

where r is the rate constant. When r is large, this func-
tion approaches asymptote quickly and the transition to
retrieval occurs in only a few trials. When r is small, the
function approaches asymptote slowly and the transition to
retrieval occurs only after many trials.

Substitution of Equations 3, 4, and 5 into Equation 2
yields a close approximation of the CMPL simulation
predictions for the overall mean RT collapsed across
items and participants.2 Figure 1 shows graphically this
CMPL RT function in a hypothetical (and noise free) data
set. Also shown in the figure are the component power
functions for each strategy in the hypothetical data. For
comparison, the best fitting three-parameter power function
to the CMPL function is also shown. The EBRW and
instance theories can predict speedup overall which
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Figure 1. Predictions of the component power laws (CMPL)

theory for the overall mean reaction time for a hypothetical data
set.

is a close approximation to a three parameter power
function, and this fact has been treated as providing
support for the theories (Logan, 1988; Palmeri, 1997).
It is important to note that these theories are only con-
strained to predict exact power function speedup for the
retrieval strategy (due to the properties of the race among
instances). When there is a transition from algorithm to
retrieval, they can predict deviations from the power
function during the practice interval over which
the transition occurs. However, the specific deviations
from the power function that are possible in these models
have not been explicitly identified. In particular, neither of
these theories have to date been shown to generate speed-
up effects that follow the CMPL function depicted in Fig-
ure 1. Thus, a demonstration that the numerosity judg-
ment data do not follow the power function, but rather
follow the CMPL function, would constitute a significant
challenge.

Power Function Versus CMPL Fits to the Palmeri
(1997) Data

Three parameter power functions, including asymptote,
were fit to the overall data for each numerosity for each of

2 Equatjons 2 through 5 are a close approximation to the CMPL
simulation predictions. However, when data are collapsed over
items and participants in the simulation, RTs are predicted to
deviate from the power function for the retrieval trials during
roughly the first half of the strategy transition (see Rickard, 1997).1
assume for current purposes that these deviations from the power
functions are negligible. If they are not negligible, they would only
be expected to decrease the quality of the fits.
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Figure 2. Power function and component power laws (CMPL) fits to the reaction time (RT) data of

Experiment 2.

the three Palmeri (1997) experiments as shown by the
hatched line in the plots in Figures 2, 3, and 4 (for
Experiments 1, 2, and 3, respectively).> For Experiments 2
and 3, data are collapsed across item similarity. For
each experiment, a total of 18 free parameters are required
for these fits. The power function fits are good for the
six dot patterns but become progressively poorer for larger
numerosities. For Numerosities 8 through 11, the power
function clearly is not providing a good characterization of
the data. Indeed, for these numerosity levels in Experi-
ments 1 and 2, the power function systematically under-

estimates actual RT by as much as 500 ms or more
between about the 10th and 20th block of practice. These

3Data for individual items (correct trials only) were logged,
then averaged across items, and then averaged across participants. The
inverse log of these averages was then computed, and regression analyses
were performed on these data. This procedure is equivalent to perform-
ing the analysis on the geometric mean of the data. This approach is less
sensitive to distortions caused by possible differences in parameter
values of the power functions for individual items. If the power function
is true for the expected value at the item level, it will be preserved in the
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Figure 3. Predictions of the component power laws (CMPL) theory for the overall SD for a

hypothetical data set. RT = reaction time.

are substantial deviations for RT curve fitting, and especially
so in light of the fact that actual RTs were only about
2,000 ms during this interval of practice. Further, after
about practice Block 50, the power function systematically
overestimates the data. Indeed, for Numerosities 10 and 11 in
Experiments 1 and 2, there is almost no overlap be-
tween the data and the power function prediction after about
Block 50.

aggregate data by taking the geometric mean, provided the asymptote
value is zero or is first subtracted, and that pre is roughly constant across
items and participants. Thus, the geometric mean is susceptible to fewer
sources of distortion than is the arithmetic mean.

If fit separately to each of the six numerosities of a given
experiment, the CMPL RT function would require a total of
36 (6 X 6) free parameters. However, the theory suggests
several reasonable constraints that allow the number of free
parameters to be vastly reduced if data for a given experi-
ment are fit simultaneously over all six numerosity levels.
First, it is reasonable to assume that previous learning, pre, is
the same value for all numerosities. Second, because the RT
for the counting algorithm is assumed to be a linear function
of numerosity, the b/ parameter for the algorithm can be
expressed as b] for Numerosity 6, plus a constant increment
parameter, inc, which is multiplied for each numerosity by
the difference between that numerosity and 6. Third, the
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Figure 4. Power function fits to the standard deviation (SD) data of Experiment 2. CMPL =

component power laws; RT = reaction time.

learning rate (c) can be assumed to be the same for all
numerosities within the algorithm and retrieval strategies,
respectively. Although the CMPL model as developed by
Rickard (1997) does not require the rates to be the same
for algorithm and retrieval strategies, this additional con-
straint appears reasonable and is included in the current
fits to further reduce complexity. Finally, Palmeri
(1997) produced evidence that the retrieval RTs and
the number of trials necessary to make the tramsition to
retrieval were different for different numerosities. Specifi-
cally, there appear to be anchor effects such that at least

Numerosities 6 and 11 have faster retrieval RTs than do other
numerosities. To accommodate the possibility of differing
retrieval RTs, the values r and b2 were allowed to
take different values for each numerosity. In summary, the
above constraints allow the CMPL model to be fit simulta-
neously to all 6 numerosities with a total of 16 free
parameters. These constraints put the number of parameters
in the same range as that for the three parameter power
function, and they reduce the complexity of the nonlinear
regression equations to a more manageable level at which
stable fits can be obtained. The corresponding equations for
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the predicted overall mean RT for each numerosity are as
follows:

RTg = bl - (N + pre)=c-[1 —e WD)
+ b2 - (N) ¢ - [e778 WDy,
RT, = (bl + inc) - (N + pre) - [1 — e ™D}
+ b2, - (N)= - [e~"7 - ™=,
RT; = (b1 + 2-inc)- (N + pre)~° - [1 — e~8-¥-D]
+ b2g- (N)™¢- [e~r8-®V-D],
RTy = (bl + 3 -inc) - (N + pre)= - [1 — e %=1
+ b2y - (N)~¢-[e2 W-D],
RT,y = (b1 + 4 - inc) - (N + pre)™ - [1 — e7710-®¥~)]
+ b2,y - (N) ¢ - [er10-O-D,
RT,, = (b1 + 5 -inc) - (N + pre)=¢ - [1 — e7"11-®=D]
+ b2, - (N)™¢ - [e71-NV=D,

These equations were fit to the RT data simultaneously
for all numerosities for each experiment using the Proc
NLIN program (SAS Institute, 1994). The fits are shown by
the solid lines in Figures 2, 3, and 4. The CMPL func-
tion clearly characterizes the data better overall than does
the three parameter power function, in terms of both the
visual fit and overall 72 (.972, .982, and .972 for the CMPL
fits to Experiments 1, 2, and 3, respectively; .870, .871, and
.920, for the three parameter power function fits to Experi-
ments 1, 2, and 3, respectively). Indeed, across 18 data sets
from the three experiments, there were no clear, systematic,
and replicable deviations of the data from the CMPL
predictions. Also as predicted, the improvement in fit
provided by the CMPL function clearly increases with
increasing algorithm RT (see also Rickard, 1997,
Experiment 2).

Note that the 72 for the power function fits are significantly
lower than those reported by Palmeri (1997). The primary
reason for this is that Palmeri reported r? based on data
collapsed over practice blocks within each session, whereas
the results reported here were not collapsed over session.
Collapsing over session reduces noise, but at the potential
expense of also greatly reducing sensitivity to any system-
atic deviations from the power function that may be present
in the data.

The parameter estimates for the CMPL fits for each
experiment are shown in Table 1. Several patterns are worth
noting. First, all parameters take on reasonable values,
indicating that the fits are not due to parameter flexibility

Table 1
Parameter Estimates for the CMPL Fits
for Each Experiment

Parameter Exp. 1 Exp. 2 Exp. 3
pre 16.61 298 9.178

c 2077 .2042 1831
big 3507 5133 2647
inc 576.7 1250 452.8

Ts 3966 .1478 1380

ry 0458 0572 0378

rg 0233 0570 0275

ry 0333 0544 0301
o 0229 0389 0535
ry 0286 0464 0592
b2 1795 1707 1703
b2, 2246 1923 1984
b2 2302 2091 2010
b2y 2173 2175 1930
b2y 2088 2080 1742
b2y, 1976 1888 1850
Note. CMPL = component power laws; Exp. = experiment.

outside of a psychologically reasonable range. Second, the
rate estimate, r, which estimates how quickly the transition
to retrieval occurs, indicates that the 50% strategy transition
point (i.e., the point at which p in Equation 4 reaches a value
of .5) occurred between about Block 10 and 25 for Numerosi-
ties 7 through 11. However, for Numerosity 6, the fit
indicates a very fast transition to retrieval, within the first
few blocks of practice. It is not clear why a super fast
transition to retrieval might occur for six dot patterns alone.
One reasonable possibility is that six dot patterns are much
easier to map onto canonical forms, thus facilitating a fast
transition to retrieval. Note that a fast transition to retrieval

2000 +
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Figure 5. Power function and component power laws (CMPL)
fits to the reaction time data of Experiment 1.
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Figure 6. Power function and component power laws fits to the reaction time data of Experiment 3.

SD = standard deviation.

for Numerosity 6 provides a candidate account for why no
substantial deviation from the power function was observed
for that numerosity level: After the first couple of blocks of
practice, performance for that numerosity was (according to
the CMPL fits) dominated by the retrieval power function.
Finally, note that estimates of pre (previous learning) vary
considerably across the three experiments. However, pro-
vided that this parameter takes some nonnegligible positive
value, its precise value is not critical to the quality of fit. For
example, pre could be set to a value of 15 (or, alternatively,
to a high value like 300) for all experiments without

noticeable loss in quality of fit. Thus, although the algorithm
power function is strictly required under the CMPL model, it
does not appear to be doing much work in the fits for these
data.

Predictions of the CMPL Model for the
Standard Deviation

The CMPL theory also makes the prediction that the
variance of the latency will decrease as a power function
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Figure 7. Power function fits to the standard deviation (SD) data of Experiment 1.

only within each strategy. The overall predicted variance is
given by the more complex mixture equation,

o’ = o'ilgorithm -I-p)+ cxz'etrieval -(p)
+p- (1~ p) - RTagoritm — RTretrieva)’s  (6)

where o-ﬁ,goﬁmm and 02, are the power functions govern-
ing reduction in algorithm and retrieval variance, respec-
tively. The standard deviation (SD) is then the square root of
the variance computed in Equation 6. An example CMPL SD
function is depicted in Figure 5. Note that there is a “bubble

effect” in the overall SD caused by the p.- (1 —~p)-
(RTg0rithm — RTetrieva)* term in Equation 6. The CMPL
theory predicts that the overall SD can actually increase in
absolute terms (that is, can become larger during the strategy
transition than it is at the beginning of practice) for a
brief interval, as is the case in the example function de-
picted in Figure 5. Note, however, that this absolute in-
crease in SD is not required by the theory for any given data
set. For example, if there is some decrease in algorithm RT
and SD with practice and if the difference between the
algorithm and retrieval RT functions is relatively modest {or
if the transition to retrieval occurs very quickly) then the
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Figure 8. Power function fits to the standard deviation (SD) data of Experiment 3.

bubble effect will have less influence, and the SD could
decrease monotonically with practice (although in most
cases it would still deviate significantly from the power
function). In contrast, race models such as the instance
theory are mathematically required to predict a monotonic
reduction in the overall SD, given a set of ancillary
assumptions as described in Logan (1988; see also Compton
& Logan, 1990).

SDs are much more variable than the mean RTs in any
data set. To reduce noise in this analysis, SD data
were computed for each block and then averaged over
five consecutive block sequences. For Experiments 2 and 3,
SDs for each pattern similarity type were then averaged to

further control for noise.* Three parameter power func-
tions were fit to each data set as shown in Figures 6, 7, and 8.
The SDs are clearly not well fit by a power function, with the
exception of some of the six and seven dot data
sets. Further, the deviations have a shape generally consis-
tent with the predictions of the CMPL model (see Figure 5)
and for large numerosities there is typically a bubble in the

48Ds were first computed for each practice block and for
each pattern similarity type, and then averaged across partici-
pants, practice blocks, and similarity types. Thus, differences in
means across these variables are not a part of the variance
estimates.



OBSERVATIONS 541

data.’ For Numerosities 7 through 11, the bubble term is
predicted (based on the RT fits described earlier) to take a
maximum value between about Block 15 and Block 25.
For Numerosity 6, it is predicted to take a maximum
value within the first several blocks. These predictions are
roughly consistent with the bubble effects observed in
the data. Finally, for the larger numerosities, there is often a
clear absolute increase in SD with practice. This result
appears to constitute the first demonstrated case of absolute
increase in SD with practice in any skill acquisition task.

Discussion

The preceding results make two fundamental points about
human skill acquisition. First, the evidence is now clear that
the power law of practice (Newell & Rosenbloom, 1981)
does not hold for the overall RT or SD data for any arbitrary
task. Rather, it appears to hold only within each strategy
used to perform a task (see also Delaney, Reder, Staszewski,
& Ritter, 1998). Second, as predicted by the CMPL theory,
strategy execution appears to be an either—or phenomenon
across a wide variety of skill domains. Either the algorithm
or memory retrieval, but not both, are executed on each trial.
There may be attentional limitations that preclude execution of
multiple strategies concurrently in many if not all task domains.

Alternatively, it is conceivable that there are ways in
which the instance or EBRW theories can account for the RT
and SD results while preserving the assumption of parallel
strategy execution. For example, the probability of learning
an instance may not be the same for all items, as is assumed
to date in the instance and EBRW theories. Consider the case
in which an instance is encoded for Item 1 on the first block
of trials but instances are not encoded for Item 2 until the
third block. In this case, data for Block 2 are going to reflect
a mixture of (a) a race between traces (instances) of Item 1
and the algorithm and (b) the algorithm alone applied to Item
2. This will produce a mixture of (a) versus (b) type trials
that may generate the observed patterns in the data. How-
ever, at present it is at best unclear whether such modifica-
tions could account for the combined pattern of results for
both RT and SD data. Explicit simulations testing candidate
modifications to the instance or EBRW theories are needed.

One additional aspect of the fits merits additional discus-
sion. The data from Experiment 3 deviated less from the
power function at each numerosity level than did data
from Experiments 1 and 2. An additional analysis separating
data from Experiment 3 into friends and enemies re-
vealed that for enemies, the RT and SD fits looked much like
those of Experiments 1 and 2. For friends, however, the
deviations from the power function, while still observ-
able, were even less pronounced than those shown in Fig-
ures 4 and 8. Inspection of Figures 5, 9, and 12 of Palmeri
(1997) gives some hint of a possible explanation for this
effect. It appears that the transition to retrieval, as indexed in
those figures by the slope relating RT to numerosity,
occurred unusually fast for the friends condition in Experi-
ment 3 compared with all other conditions of all experi-
ments. A fast transition to retrieval will attenuate observed

deviations from the power function in the overall RT and SD
data, simply because if the transition occurs very quickly,
the majority of the data will conform closely to the retrieval
power function.

Finally, in drawing theoretical conclusions based on
these results, it is important to first note that the EBRW
theory provides an elegant account of dot patterns similarity
effects at a given point during practice. The current version
of the CMPL theory simply cannot account for such effects,
and it is an open question whether it can be extended
to do so. However, it is now also an open question whether
the EBRW and instance theories can be modified to provide a
comprehensive account of the skill acquisition effects in numer-
osity judgment and other tasks (e.g., Rickard, 1997).

5In principle, Equation 6 could be fit to the overall SD data
analogously to the way Equation 2 was fit to the RT data. How-
ever, as evident in Equation 6, overall SDs are dependent in part
on the strategy specific RTs. Thus, in order to produce opti-
mized fits to both of these variables, RTs and SDs would need
to be fit simultaneously. This fact, combined with the intrinsically
much greater noise in the SDs relative to the RTs, precluded arriving at
stable nonlinear regression fits for Equation 6 for these data.
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Appendix

Simulation Results

In the CMPL simulation model for arithmetic and related tasks
described in Rickard (1997), the critical first step of processing involved
a competition between a problem node mediating the first step of the
algorithm and a problem node mediating direct retrieval of the answer.
The problem node in both cases corresponded to a particular interpreta-
tion of the stimulus. For example, consider the pound arithmetic
problem 4 # 17 = ? The first step of the algorithm strategy activated a
subtraction node based on the two numbers contained in the stimulus
(17 — 4). The direct retrieval strategy, on the other hand, activated a
problem node corresponding to the pound arithmetic problem (4 # 17).
The node with the most activation at a specified threshold point then
continued to accrue activation, while the activation of the other node
was set to zero.

For numerosity judgment, in contrast, no preexisting problem
node corresponding to each specific novel pattern of dots would exist
prior to the first practice block. Further, execution of the dot count-
ing algorithm does not depend on accessing such a preexisting
representation. Thus, a competition between a problem node represent-
ing the first step of the algorithm and a problem node representing
direct retrieval would make no sense for this task domain. For this
reason, the competition at the problem level in Rickard (1997)
needs to be eliminated to simulate numerosity judgment.

A CMPL simulation mode! for the critical strategy decision stage in
the numerosity judgment task, modified to eliminate the problem level
competition, is shown in Figure Al. In this simulation, the first
processing step is a competition between the “retrieve” subgoal and the
“execute counting algorithm” subgoal, which is analogous to the
subgoal competition described in Rickard (1997).A! If the algorithm
subgoal wins this competition, then the counting algorithm is executed
and memory retrieval is suppressed. If the retrieval subgoal wins,
retrieval proceeds exactly as in the Rickard (1997) simulation and the
algorithm is suppressed. No attempt is made to model the dot counting
algorithm explicitly beyond the strategy decision point. Rather, it is
assumed that any speedup in dot counting with practice follows a rough
power function of the number of blocks of practice. There is no
theoretical precedent for this claim in the model. Rather, it is simply the
most reasonable default expectation. There are no published data from
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Figure A2. Simulation results for proportion of algorithm trials as
a function of practice. Also shown is the best fitting negative
exponential function (Equation 5). The simulation is for 18
participants with 12 problems each over 100 blocks of practice.

skill acquisition tasks to date that call into serious question the
assumption that the power law holds to a very good approximation
within a single strategy (i.c., within a single sequence of cognitive steps
performed in the service of some goal).

Parameter settings for this simulation are the same as those described
in Rickard (1997), with two exceptions. First, the beta distribution that
governs the values of ¢2 across items in the simulation had parameter
values alpha = 4 and beta = 16. These values yielded an average rate
parameter for the retrieval power function of 0.2, which matches closely
with the estimates of the regression fits to the data. Second, the previous
leaming for the algorithm was set to 325.

The proportion of items on which the retrieval strategy was
selected (p) in the simulation is shown for a set of 12 items for 18
participants in Figure A2 (for more details of the simulation, see
Rickard, 1997). The fit of Equation 2 is quite good, yielding an r2 of
0.992. Most of the major deviations between the data and the
prediction in Figure A2 appear to reflect random fluctuations, as
they do not replicate over repeated simuiations. The chosen value
of pre (325) yielded a strategy transition that roughly matches that
which appears to have occurred in the data. Values of pre smaller
than 325 result in a faster transition to retrieval that is well
described by Equation 5, and values somewhat greater than 325
result in a slower transition that is also well described by Equation
S. However, as pre becomes substantially larger than 325, the form
of this curve begins to take more of a sigmoidal shape. As pre
becomes extremely large, Equation 5 no longer provides a close fit.

Al Note that the equation specifying the relation between ¢/ and
¢2 in Rickard (1997) implies that the random fluctuation in a(?) is
incorporated into the value of ¢/ on each trial. This reflects an
oversight in the description of the simulation model in that article. The
value of a(#) used in calculating ¢/ was in fact set to the mode of the beta
distribution for a(z), which has been .8 in all simulations to date.
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