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Bending the Power Law: A CMPL Theory of Strategy Shifts and the 
Automatization of Cognitive Skills 

T i m o t h y  C. R icka rd  
University of California, San Diego 

The shift with practice from use of generic, multistep problem-solving strategies to fast and 
relatively effortless memory-based strategies, was explored in 2 experiments using pseudoa- 
rithmetic tasks. A complete transition to the memory strategy occurred by about the 60th 
exposure to each problem. The power law of practice did not hold in the overall data for either 
the mean or the standard deviation of response latency, but it did hold within each strategy 
(algorithm or retrieval). Learning was highly specific to the practiced problems. These results 
constitute the 1st clear demonstration of a skill for which the power law does not apply 
overall. The results do not support the instance theory of automatization (G. D. Logan, 1988) 
but are consistent with an alternative component 12ower laws (CMPL) theory that assumes 
that because of intrinsic attentional limitations, only 1 strategy can be executed at a time. 

One of the fundamental processes of human skill acqui- 
sition is the strategy shift with practice from use of generic, 
multistep procedures to direct retrieval of answers from 
memory (Ashcraft, 1992; Lemaire & Siegler, 1995; Logan, 
1988; Reder and Ritter, 1992; Rickard & Bourne, 1996; 
Siegler, 1988). Examples are numerous in both the natural 
environment and the laboratory. Foreign vocabulary learn- 
ing (Crntcher, 1989), spelling (Siegler, 1986), acquisition of 
linguistic rules (Bourne, Healy, Rickard, & Parker, 1997; 
Healy & Sherrod, 1994), and visual numerosity judgments 
(Lassaline & Logan, 1993; Palmed, 1997) can all reflect 
this type of strategy shift. Basic single-digit arithmetic is 
probably the most familiar example. During initial stages of 
learning, children often use counting procedures that can 
require 10 s or longer to execute. With sufficient practice, 
however, they learn to retrieve answers to individual prob- 
lems directly from memory. By adulthood, the direct- 
retrieval strategy typically yields answers in about a second 
(Siegler, 1988). 

This article evaluates two candidate accounts of adult 
skill acquisition, strategy shifting, and the development of 
automaticity in these and related skill domains, with a 
current focus on mental calculation. 1 The models under 
comparison make diametrically opposing claims about two 
fundamental properties of human information processing. 
The instance theory of automatization (Logan, 1988) claims 
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that direct retrieval from memory is automatic and execut- 
able in parallel with a variety of other more complex pro- 
cesses, such as multistep procedures or algorithms. The 
alternative model developed in this article assumes that 
memory retrieval is strongly dependent on attention and that 
only one retrieval event can be completed at any given time. 
The theory thus precludes parallel completion (but not par- 
allel initiation) of two or more memory-retrieval events and, 
by extension, of memory retrieval and a multistep algorithm 
in which memory retrieval is involved in one or more of the 
steps. An empirically grounded resolution of this issue is 
central to development of a complete model of memory and 
skill acquisition. A finding that direct retrieval and algorith- 
mic strategies are executable in parallel in tasks like mental 
arithmetic suggests that a variety of other complex thought 
process might also be executable in parallel. Alternatively, 
demonstration that strategy execution is a one-at-a-time 
phenomenon establishes an important boundary condition 
on the extent and nature of parallel human information 
processing and highlights the importance of programmatic 
research that explores the mechanisms of strategy choice 
and the factors influencing their operation (e.g., Anderson, 
1993; Lemaire & Siegler, 1995; Reder & Ritter, 1992). 

A second difference between the instance theory and the 
alternative introduced in this article involves assumptions 
about memory representation. According to the instance 
theory, each problem-solving episode results in an indepen- 
dent record, an instance, and each instance completes inde- 
pendently from other instances during subsequent perfor- 
mance. The alternative model proposed later makes the 
opposing claim that the type of memory that is operating in 

~The theory of Lemaire and Siegler (1995) provides good 
accounts of similar strategy-shift phenomena in children's arith- 
metic. However, that model to date has not been applied to the 
aspects of performance that are the focus of this article, and thus 
its predictions are not treated in this section. However, I consider 
implications of the results for that model in the General 
Discussion. 
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skill domains is best understood as a prototype representa- 
tion for each item, which extracts and stores aspects of 
performance episodes that are common across repetitions 
and that are crucial for subsequent skilled performance. The 
effect of practice is effectively to strengthen a prototype 
representation for each item. Although this second differ- 
ence between the theories is not tested directly in this 
article, general empirical support for a model that assumes 
strengthening of a prototype at least establishes the viability 
of this alternative form to representation. I begin with a brief 
overview of the power law of practice, which plays a 
fundamental role in the empirical predictions of both 
models. 

The Power Law of Practice 

Power-function speedup with practice has been observed 
across a wide variety of tasks, including retrieval of facts 
from memory (Pirolli & Anderson, 1985; Rickard, Healy, & 
Bourne, 1994), repeating sentences (MacKay, 1982), prov- 
ing geometry theorems (Neves & Anderson, 1981), learning 
editing routines (Moran, 1980), rolling cigars (Crossman, 
1959), and evaluating logic circuits (Carlson, Sullivan, & 
Schneider, 1989). In fact, power-function speedup appears 
to be so ubiquitous that Newell and Rosenbloom (1981) 
conferred to it the status of a scientific law. The power 
function is a member of a large class of functions that 
predicts a negatively accelerating rate of speedup as a 
function of practice. That is, it predicts substantial speedup 
from trial to trial during early stages practice but progres- 
sively less speedup from trial to trial during later stages. In 
formal terms, 

RT = a + b ( N  + p)-C, (1) 

where RT is the response time required to do the task, N is 
the number of practice trials, and a, b, c, and p are param- 
eters. The number of previous learning trials is represented 
byp. The term b(N + p)-C goes to zero as Ngoes to infinity, 
and thus the parameter a represents the asymptotic RT. The 
parameter b is the difference between the RT on the first 
trial and the RT at asymptote, and c is a rate parameter that 
determines how quickly the RT approaches asymptote. A 
simplified two-parameter version of the power function that 
ignores previous learning and the asymptote fits RT data 
extremely well in most circumstances (see Newell & Rosen- 
bloom, 1981). 

Equation 1 is linear when plotted in log-log coordinates 
provided that the asymptote is fLrSt subtracted. Thus, 

log(RT - a) = log(b) - c[log(N - p)]. 

This log-log linearity can be a powerful diagnostic too! in 
evaluating how closely data conform to a power function. 
Often substantial and systematic deviations from linearity in 
log-log plots can be detected visually even when statistical 
regressions fits yields r 2 values of .95 or higher. Thus, in 
evaluating power-function fits to data, both statistical mea- 

sures and visual inspections of log-log plots are of diag- 
nostic value (Newell & Rosenbloom, 1981). 2 

The power law has been an important empirical constraint 
influencing the development of a variety of skill theories, 
including those of Anderson (1983, 1993), Cohen, Dunbar, 
and McClelland (1990), Logan (1988), MacKay (1982), and 
Newell and Rosenbloom (1981), and it is generally believed 
to hold for any task domain. There is, however, only limited 
empirical evidence that the law holds for tasks exhibiting a 
transition from algorithm to retrieval. Indeed, as I discuss 
later, the available data hint at the possibility that the law 
does not always hold in overall data for this task domain. 
One of the purposes of the current research is to collect new 
data that more decisively addresses this question. 

The Instance Theory of  Automatization 

Logan's (1988) instance theory of automatization (see 
also Compton & Logan, 1991; Logan, 1990, 1992) incor- 
porates three basic assumptions. First, it assumes that en- 
coding into memory is an obligatory, unavoidable conse- 
quences of attention, Second, it assumes that retrieval from 
memory is an obligatory, unavoidable consequences of at- 
tention. Third, it assumes that each encounter with a stim- 
ulus is encoded, stored, and retrieved separately. This last 
assumption makes the theory an instance theory of memory, 
which contrasts it with a variety of strength-based theories 
of memory processes (e.g., Anderson, 1983; Cohen et al., 
1990; MacKay, 1982). 

Three additional assumptions allow for derivation of a 
quantitative model that can be applied directly to data from 
tasks exhibiting a transition from algorithm to retrieval (see 
Logan, 1988, for a detailed discussion). First, the algorithm 
and each memory instance are assumed to compete in 
parallel, and independently, on each trial. The process that 
finishes the race first controls the response. Second, each 
episode, or instance, has the same distribution of finishing 
times that does not change with practice. Third, the algo- 
rithm has a separate distribution of finishing times that does 
not change with practice. The memory strategy comes to 
dominate the race as practice proceeds because, as more 
memory episodes accrue, the probability that one of t h e m  
will win the race steadily increases. 

Using a combination of formal mathematical proofs and 
Monte Carlo simulations, Logan (1988) showed that the 
instance theory predicts that the speedup in RT, as well as 
the reduction in standard deviation (SD) follows a power 
function of practice and that the rate parameters for the 
speedup in RT and reduction in SD are the same. Expressed 
as equations, the instance theory's predictions for the RT 
and SD are 

RT = al + bl(N-0 

SD = a2 + b2(N-~). 

2 Fitting on the log-log scale selectively attenuates large RTs, 
and thus the later practice trials are given greater weight than the 
early trials. 
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Logan (1988, Experiment 4) tested the instance theory using 
an alphabet arithmetic task. In this task, a problem is pre- 
sented for verification (e.g., E + 5 = J, true or false?), and 
the answer is determined by whether or not the right-side 
letter corresponds to the letter "down the alphabet" from the 
left-side letter as indicated by the numerical addend. Thus, 
E + 5 = J is true. In the Logan (1988) experiment, each 
participant received 72 blocks of practice, across 12 ses- 
sions, on 10 true and 10 false problems at each of four levels 
of addend size (2, 3, 4, and 5), for a total of 80 problems per 
block. The instance theory fits to that data set were reason- 
ably good overall, as shown in Figure 9 of Logan (1988). 
However, on closer examination, it is clear that the fits 
underestimate the RTs and SDs during the middle portion of 
practice and overestimate these values toward the end of 
practice. This trend is weak for addend sizes of 2 and 3 but 
is clear for addend sizes of 4 and 5. Logan (1988) acknowl- 
edged these deviations but argued that they do not constitute 
a serious problem for the instance theory for two reasons. 
First, no existing model of skill acquisition predicts the 
deviations (because all current theories predict power- 
function speedup), and thus evidence against the instance 
theory is also evidence against the other models. Second, 
some participants reported at the end of the experiment that 
they used special mnemonics to deal with the problems with 
addends of 5. Logan proposed that participants shifted to 
using mnemonics between the fourth and fifth sessions of 
practice and that the use of mnemonics resulted in more 
efficient, or more memorable, traces, with a faster 
associated-RT distribution. Logan (1988) suggested that a 
modified version of the instance theory that incorporates 
this assumption can account for deviations from the power 
functions observed in the addend 5 alphabet arithmetic data. 

The Component  Power Laws Theory 

The instance theory is the first principled alternative to 
process-based approaches to automaticity (which assume 
that speedup with practice reflects essentially more efficient 
processing of a single strategy). The new theory proposed in 
this article does not take issue with Logan's (1988) funda- 
mental insight that automaticity is, at least in some contexts, 
best understood in terms of a strategy shift from algorithm- 
based to memory-based performance. Rather, it differs with 
respect to important assumptions about the underlying pro- 
cesses and representations that mediate this transition. Cen- 
tral assumptions of the instance theory are that algorithm 
and retrieval strategies are executed in parallel and indepen- 
dently of one another and that memory consists of a set of 
independent instances. In this section, an alternative CMPL 
theory is introduced, which makes the contrasting claims 
that either the algorithm or retrieval strategies, but not both, 
are selected at the outset of each trial and that a prototype 
representation for each item is strengthened with practice. 
These two assumptions lead naturally to the unique predic- 
tions that the power law of practice does not hold in the 
overall data for either the RTs or the SDs, but does hold 
generally within each of the component strategies. The 

connectionist (in the simple sense of nodes with connec- 
tions) simulation model described later is motivated largely 
as a sufficiency demonstration that the fundamental as- 
sumptions of strength-based learning and nonparallel strat- 
egy execution can indeed lead naturally to these predictions. 

Architecture 

The architecture of the CMPL simulation model is de- 
scribed in the context of the pound arithmetic task used in 
Experiment 1, Prior to practice, solving these problems 
requires execution of a simple three-step arithmetic algo- 
rithm. Consider for example the problem 4 # 17 = ?. As the 
first step of the algorithm, the left-side number is subtracted 
from the right-side number (17 - 4 = 13). Second, 1 is 
added to the result of Step 1 (13 + 1 = 14). In the third and 
final step, the result of Step 2 is added to the right-side 
number (17 + 14 = 31). A basic assumption of the model 
is that pound arithmetic and related algorithms are a string 
of purely sequential memory-retrieval events, in which each 
step of the algorithm is a single retrieval event. The direct 
retrieval strategy is also treated as a retrieval event that is 
qualitatively equivalent to the retrieval event associated 
with execution of one step of the algorithm. As described in 
detail later, the model claims that on every trial there is a 
competition between the first step of the algorithm and 
direct retrieval strategy. Strategy choice in the model boils 
down to a choice process between these two single-step 
retrievals. The CMPL model thus makes the fundamental 
assumption that two retrievals cannot be completed in par- 
allel (note, however, that the model does assume that mul- 
tiple candidates for retrieval are initially activated in paral- 
lel). There is independent evidence from other experimental 
paradigms in support of this claim (Carrier & Pashler, 
1995). 

The strategy-choice process, and subsequent execution of 
the first step of the algorithm or of the direct-retrieval 
strategy, is the focus of the model diagram in Figure 1 and 
of the immediately following discussion. Straightforward 
extension of the model to account for RTs and SDs for all 
steps of a multistep algorithm are discussed subsequently. 
The top node in Figure 1 represents a general goal for 
solving a problem. This node has excitatory connections 
with two nodes at the subgoal level, one for executing the 
first step of algorithm (a subtraction in this example) and 
another for executing a direct retrieval from memory. The 
two subgoal nodes in turn have excitatory connections to 
long-term memory nodes at the problem level for executing 
either a subtraction or the direct-retrieval strategy. Also 
connected to the problem-level nodes are inputs from the 
external stimuli. The model assumes that all nodes at the 
problem level that are consistent with some known inter- 
pretation of the attended information (i.e., the external stim- 
uli and information in working memory) receive activation 
via this pathway, which is independent of activation re- 
ceived from nodes at the subgoal level. Thus, problem-level 
nodes receive both bottom-up or perceptually driven acti- 
vation and top-down or goal-driven activation. There are 
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Figure 1. A diagram of the Component power laws network for the first step of the algorithm and 
the retrieval strategy for the pound arithmetic problem 4 # 17 = ?. Arts. Sub. = answer for subtract; 
Ans. Ret. = answer for retrieve. 

also reverse excitatory connections from the problem nodes 
to the subgoal nodes. Thus, nodes as the subgoal level also 
receive both bottom-up and top-down activation. There are 
excitatory connections from each problem node to the cor- 
responding answer nodes, There is also a single inhibitory 
connection from the direct memory-retrieval problem node 
to the algorithm first-step subgoal node. Finally, the model 
embodies a global, nonassociative winner-take-all inhibi- 
tion that operates independently at the subgoal and problem 
levels and that is discussed in more detail later. 

Learning and Process Assumptions 

The necessary representations and connections for per- 
forming each step of  the algorithm are assumed to exist at 
the outset of  practice (solid lines in Figure 1). Strengths of  
these connections are assumed to take positive values that 
depend on the extent of  previous experience with the com- 
ponent steps. Nodes and connections for the direct-retrieval 
strategy are assumed to be established on the first trial of  
practice for each problem (hatched lines). Connections 
among all nodes are assumed to increment in strength as a 
result of  practice, according to the following rules. First, if 
the algorithm is the selected strategy on a given perfor- 
mance trial, all connections for both the algorithm and 
retrieval strategy are incremented for that problem. Second, 
if the retrieval strategy is selected, only strengths corre- 
sponding to the retrieval strategy are incremented. Finally, 
connection strength value, st, is assumed to be a negatively 

accelerating function o f  number of  practice trials, tr, on 
which strengthening occurs of  the form 

st = 1 - c l  "~2. (2) 

If  the parameter cl  is set to a value just below 1.0 and c2 is 
set to a value of  about 0.5, then st increases gradually from 
an initial value of  0 to a value of  1.0 with infinite practice. 3 

Activation of  each node in the network is a function of  
input to that node from other nodes and of  the number of  
cycles that the model has iterated (with synchronous updat- 
ing) on a given performance trial. For a given target node of  
interest, n, this activation takes the form 

an, i ----- 1 - -  [ 1  - -  sum(stj,nXaj,i_l)] i, (3) 
J 

3 There are psychologically plausible mechanisms by which the 
strengthening function might take on the form of Equation 2. As 
one example, assume that some finite number of neural connec- 
tions are available to be strengthened in support of any given 
association and that strengthening of any one of them follows 
Equation 2 with c2 set to 1.0 (i.e., strengthening of each connec- 
tion is exponential). Also, assume that because of unspecified 
random factors, the strengthening value, cl, varies among the 
connections. Most connections strengthen very slowly, but a few 
strengthen quickly. Finally, assume that total strength is simply 
given by the sum of the strengths of the individual connections. 
Under these conditions, the overall strength as a function of 
practice can be closely approximated by Equation 2. 



292 RICKARD 

where an, ~ is the activation of node n on Cycle i, j is a 
summation across all nodes in the network, stj.n is the 
strength of the connection between each node and the target 
node (self-connection strengths are all fixed at zero, and 
connections between all nodes that are not directly linked in 
Figure 1 have fixed strengths of zero), and aj.i_ 1 is the 
activation of each node in the summation index on the cycle 
immediately preceding Cycle i. Thus, activation of any 
given target node of interest is an exponential function of 
the number of processing cycles, i, which is in turn modu- 
lated by the connection strengths and activation levels of 
nodes feeding into that target node. 4 As elaborated later, 
activation is further modulated by the winner-take-all com- 
petition at the subgoal level, which insures that one node 
within each level eventually reaches activation approaching 
1.0 and that all other nodes within each level are suppressed 
to activation of zero. 

Stra tegy-Se lec t ion  Proces se s  

Strategy selection in the model involves a dynamic inter- 
action among nodes at the subgoal and problem levels. 
Initially, when strengths for the direct-retrieval strategy are 
weak, the subgoal for the algorithm first step (in the exam- 
ple in Figure 1, the subtract subgoal) and the corresponding 
problem node (in the example, the subtract problem node 
for 17 - 4) both reach the activation threshold at which the 
within-level winner-take-all inhibition sets (the inhibition 
threshold) first, forcing suppression of subgoal and problem 
nodes for the direct-retrieval strategy. Activation then con- 
tinues to accumulate at the algorithm first-step answer node 
without competition from the direct-retrieval answer node. 

With more practice, however, the connections strengths 
among nodes corresponding to the direct-retrieval strategy 
(including the inhibitory connection from the retrieval prob- 
lem node to the algorithm subgoal node) become stronger. 
Eventually, this fact allows the retrieval subgoal to reach 
inhibition threshold first at the subgoal level, forcing sup- 
pression of algorithm subgoal activation. At this point the 
algorithm problem node no longer receives top-down acti- 
vation from the algorithm subgoal node, thus placing it at a 
disadvantage relative to the retrieval problem node (which 
has both top-down and bottom-up input). In most cases, 
when the algorithm subgoal activation is suppressed, the 
retrieval problem node reaches the inhibition threshold for 
the problem level first, forcing suppression of the algorithm 
problem node. Activation of the direct-retrieval answer 
node then accumulates without competition from the algo- 
rithm answer node. Note that the inhibitory connection from 
the retrieval problem node to the algorithm first-step sub- 
goal node has an important function of allowing the direct- 
retrieval strategy to win the competition even if the relevant 
strengths are weaker for that strategy. 

In most cases, the winning problem node corresponds to 
the winning subgoal node (i.e., if the algorithm subgoal 
node wins, then the algorithm problem node also wins). 
However, in some cases, the retrieval node wins the com- 
petition at the subgoal level even through the algorithm 

(subtract) node still wins at the problem level. This effect 
occurs because the bottom-up input to the algorithm prob- 
lem node (i.e., the input from the external stimuli) can in 
some cases be strong enough that the algorithm wins the 
competition at the problem level in spite of the bias against 
that node because of the absence of any top-down input 
from the subgoal level. In this unusual case, the model is 
designed to immediately shift the activated node at the 
subgoal level from the retrieval subgoal to the algorithm 
subgoal. This switching process is included because it is 
most natural to assume a cognitive system that avoids or 
corrects anomalous configurations such as concurrent acti- 
vation of subgoal and problem nodes that do not match. If 
one assumes that setting and execution of a goal is a 
consciously accessible process, then this feature of the 
model predicts that participants occasionally set an initial 
goal to retrieve the answer but then experience a shift to the 
algorithm strategy because retrieval fails. This experience is 
in fact reported in informal protocols, especially on trials 
immediately preceding the initial retrieval trials for a given 
item. This is exactly the point during learning at which the 
CMPL model predicts problem node-driven subgoal 
shifting. 

R T  A s s u m p t i o n s  f o r  M e m o r y  Re t r i eva l  

By substituting Equation 2 into Equation 3, activation at 
the answer level for either the algorithm or the retrieval 
node can be expressed as 

aans = 1 - [1 - api-~(1 - cl(tr)c2)] i, 

where api_ 1 is the activation, on the immediately preceding 
cycle, of the problem node that is connected to the answer 
node of interest. Solving for i, and replacing i with i t, the 
number of cycles required for the activation of the answer 
node, aa, s, to an reach a response-threshold value, a t, yields 

it = log(1 - at)llog[1 - api-l(1 - cl('r~°Z)]. (4) 

A reasonable simplifying assumption for the moment is that 
activation of the problem node (aei_ 1) is approximately 1.0 
when activation of the answer node reaches response thresh- 
old. Given this simplification, Equation 4 reduces to 

it = log(1 - a,) l log(cl  (tr)cZ), 

which can be written as 

i, = [log(1 - a,)/log(c 1)] (tr)-C2. 

Taking the log of both sides yields 

log(i,) = log[log(1 - at) l log(cl)]  - c2[log(tr)] .  
(5) 

4 Equation 3 is only stable provided that sum {sti. n × aj.i_~) is 
less than 1.0. In the simulations reported later, this term never 
approaches this value. 



STRATEGY SHIFFS 293 

Equation 5 is an exact power function, expressed in log-log 
terms, with an intercept of log[log(1 - at)/log(cl)] and a 
slope of c2. 

Each processing cycle is assumed to correspond to some 
constant increment of real time. Thus, for a given retrieval 
event (either a step of the algorithm or direct retrieval of the 
answer), the CMPL model predicts power-function speedup 
with practice. Note that this prediction depends on the 
validity of the assumption that api_ 1 = 1 when a ~  = a t. In 
practice, api_ x is slightly less than 1.0 at this point. Possible 
consequences of violating this assumption is addressed later 
in the Simulations section. 

To model noise, the threshold-response value, a t, is as- 
sumed to fluctuate as a beta distribution (Hogg & Craig, 
1978) from trial to trial. The beta distribution has a domain 
between 0 and 1, thus assuring that the threshold never falls 
outside of the range of possible activation allowed in the 
model. A fluctuating response threshold is reasonable as a 
proxy for the effects of lapses of attention, varying levels of 
motivation, as well as a variety of other intrinsic noise 
effect. 

Algorithm Assumptions 

The algorithm is treated as a string of memory-retrieval 
events, each of which is qualitatively identical to the process 
of retrieving the answer directly. The guts of algorithm 
execution are thus identical to those of direct retrieval from 
memory. This treatment of algorithms is almost certainly 
still incomplete (see, for example, Carlson & Lundy, 1992), 
but as should be evident in the following discussion, it has 
some important predictive advantages over approaches that 
treat the algorithm as a distinct and undifferentiated process. 

When activation of the answer node corresponding to the 
first step of the algorithm reaches response threshold, the 
model assumes that the attended information is updated to 
include this newly retrieved information. Also, any infor- 
marion that was attended to for execution of the first step of 
the algorithm but that is no longer needed for retrieval of the 
second step is assumed to be dropped from attentional 
focus. The retrieval event corresponding to the second and 
any subsequent steps of the algorithm then takes place 
analogously to that for the first step. The time to execute a 
multistep algorithm is assumed to be a simple additive 
function of the time needed to execute each component step. 
Note that mechanisms by which the system parses and 
selects new attended information on execution of each step 
of the algorithm are not explicitly accounted for the current 
model. Rather, it is simply assumed that the appropriate 
information is available in working memory to execute each 
step. Also, note that the model predicts that if the retrieval 
strategy does not win the competition on the first step of the 
algorithm, it does not win on any subsequent steps. 

The sum of a series of power functions that all have 
identical rate parameters is another power function with the 
same rate parameter and a scaling parameter (the parameter 
b in Equation 1) that is the sum of the scaling parameters of 
the power functions for the individual steps of the algo- 

rithm. Thus, assuming that the rate-parameter values for the 
algorithm steps are very similar for each step, at least on 
average (see simulations given next), then the CMPL model 
predicts that the power function should describe speedup 
with practice not only for the retrieval strategy but also for 
the algorithm strategy. 

An Empirically Motivated Constraint on the Values 
of cl and c2 

Equation 2 embodies two strength parameters, cl and c2. 
Note that cl is a unique component of the intercept, and c2 
is the slope of the power-function prediction (in log-log 
coordination) for speedup in RT (Equation 5). There also 
turns out to be a strong positive correlation between the 
slope and intercept (larger intercepts correspond to steeper 
slopes) in log-log regression fits of the individual-item RT 
data for each participant within a given strategy. For exam- 
ple, these values correlate around .9 on average for both 
algorithm and direct retrieval data in Experiment 1 of this 
article. 

Candidate models ultimately need to provide an account 
for this empirical relation between the intercept and slope at 
the item level. Although the CMPL model does not predict 
this correlation, the parameters cl and c2 in the CMPL 
model provide a natural framework for accommodating it. 
Specifically, the CMPL model can be constrained such that 

log[log(1 - at)llog(cl)] = xl  + x2(c2), 

where log [log(1 - at)/log(cl)] is the predicted log-RT 
intercept, c2 is the predicted log-RT slope, and xl  and x2 are 
slope and intercept parameters for the linear relation be- 
tween the slope and intercept for the log RTs. Solving for cl 
in terms o f  c2 yields 

c l  = 100°g(1-aaa°~'I+~:×c2~]. 

This constraint defining cl in terms of c2, (the slope in 
log-log plots) is incorporated into the simulations discussed 
next. 

Simulations 

Four issues are addressed in the following simulations. 
First, does the fact that the activation level of the winning 
problem node tends to be slightly less than 1.0 when the 
activation level of the winning answer node reaches re- 
sponse threshold compromise the strategy-specific power- 
function predictions of the model? Second, does the 
strategy-choice mechanism generate a strategy shift from 
algorithm to retrieval, and does the model produce within- 
strategy power-function speedup even in the context of a 
strategy shift? Third, does reduction in the SD with practice 
within each strategy follow a power function and, if so, how 
do the parameters of the power function for the SDs relate 
to those for the RTs? Finally, does collapsing data across 
multiple items and participants that have different values for 
the learning-rate parameter, c2, in any way alter or compro- 
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mise the quantitative predictions regarding either the strat- 
egy transition or the RTs and SDs of the component 
strategies? 

Simulation for a single item. At the outset of practice, 
the connection strengths between the subgoal, problem, and 
answer nodes for the algorithm are assumed to have values 
greater than zero to represent previous learning effects. All 
other connection strengths are initially set to zero. Activa- 
tions are set to zero at the outset o~ each trial, with the 
exception of the external information and the solve problem 
nodes, which are assumed to have constant activation levels 
of 1.0 throughout each trial. In the current version of the 
model, the global inhibition has a simple all-or-none prop- 
erty: When the more active of the subgoal nodes equals or 
exceeds a value of .3, the less active node is set to zero. 
Similarly, when the more active of the problem nodes equal 
or exceeds .6, then the less active problem node is set to 
zero. The response threshold, at, is set to fluctuate from trial 
to trial according to a beta distribution with parameters 
alpha = 16 and beta = 4. This distribution has a peak 
probability density at .8, and falls off sharply in both direc- 
tions such that it rarely produces values below .7 or above 
.9. 

To demonstrate basic properties of the model at the indi- 
vidual item level, 100 trials of practice on a single item were 
generated 1,000 times, and RTs and SDs were computed for 
each practice block. In this simulation, the learning-rate 
parameter, c2, was set to 0.5 for all connections, the scaling 
parameters for the relation between c2 and cl  were set to 
xl = 1 and x2 = 2.3, respectively, and the previous learn- 
ing, p, was set to 25 trials. A three-step algorithm was 
assumed. An algorithm with more (or fewer) steps yields 
larger or smaller algorithm RTs and SDs, but has no effect 
on either the number of trials necessary to make the transi- 
tion to retrieval or on the quantitative results for the retrieval 
strategy itself. 

The results are shown in Figure 2 for the RTs and Figure 
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Figure 2. Simulation results for response times (RTs) for 1,000 
items across 100 trials in which each item has identical parameter 
values. 
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Figure 3. Simulation results for standard deviations (SDs) for 
1,000 items across 100 trials in which each item has identical 
parameter values. 

3 for the SDs. The best fitting two-parameter power func- 
tions are also shown for the algorithm and retrieval RTs and 
SDs, which are presented in units of log cycles. For the 
algorithm fits, 25 trials of previous learning was assumed, in 
correspondence with the 25 trials of previous learning stip- 
ulated in the simulations. For this sample item, the algo- 
rithm is selected for the first 39 trials, and memory retrieval 
is selected thereafter. The fits are essentially exact, confirm- 
ing the component power-law predictions at the item level 
for both the RTs and SDs in the context of a strategy shift. 
Note that although the algorithm data follow a power func- 
tion, they are not linear in the log-log plot. This effect is due 
to the previous learning of 25 trials and is to be expected for 
the algorithm strategy according to the CMPL model. Note 
also that the rate-parameter estimates (c2) for he RT and SD 
fits within each strategy are identical, corresponding almost 
exactly to the value of 0.5, which was also the learning 
parameter selected for this simulation. This finding provides 
further confirmation that the actual running simulation con- 
forms very closely to the idealized mathematical derivation 
at the individual item level. 

Simulation for multiple items and participants. A sec- 
ond simulation was performed to explore possible distor- 
tions caused by collapsing data over items and participants 
with differing values for the learning parameter, c2. An 
experiment with 18 participants, each of whom practices on 
a set of 12 problems, was simulated (the conditions of 
Experiment 1). The same parameter settings were used as 
for the single-items simulation, with the exception of the 
learning-rate parameter, c2, which was generated for each 
item from a beta distribution with the alpha and beta pa- 
rameters both equal to 5. This distribution yields an ex- 
pected value for c2 of .5, with most observations occurring 
between the range of .3 to .7. To compute RTs for each 
strategy, the results for each item for each simulated par- 
ticipant were logged, and then data were averaged over 
items and then over participant. SDs for each strategy were 
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computed first for each participant and were then logged 
and averaged across participants. 5 

The strategy-transition results are shown in Figure 4. The 
first strategy transition took place on Block 3, and the last 
transition occurred on Block 69. As shown in Figures 5 and 
6, the component power-function predictions hold to a close 
approximation across most of the training interval for both 
the RTs and SDs. However, there are three important dif- 
ferences between the multi-item and single-item results. 
First, the rate-parameter values for the RT and SD within 
each strategy are no longer identical in the multiple-item 
simulation. Rather, for both strategies, the rate parameter 
takes slightly larger values for SDs than for the RTs. This 
effect reflects different results of collapsing over multiple 
items on RTs and SDs. In this simulation, there is a 
between-items RT difference that results in a between-items 
component of the SD, which was not present in the single- 
items fits. Because of the linear constraint-relating intercept 
and slope for the log RTs that is incorporated into the 
model, this between-items component of the SD decreases 
with practice. Thus, the decrease in SD with practice in the 
multi-item simulations reflects both the intrinsic within- 
item component, which follows an exact power function, 
plus an additional between-items component, which is also 
an approximate power function across the range of practice 
simulated but which decreases at a faster rate than does the 
within-items component. In combination, these two compo- 
nents of the SD result in a reduction in SD with practice that 
is still nearly an exact power function but that always has a 
rate-parameter value that is slightly greater than that for the 
corresponding RTs within the same strategy. 

Second, for both the RT and SD for the retrieval strategy, 
there is a concave downward deviation of the data from 
log - log linearity during roughly the In'st half of the 
strategy-transition interval. Because of these distortions, 
power-function fits for the retrieval strategy shown in the 
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Figure 4. Results for proportion of retrieval trials for a simula- 
tion of 12 items for each of 18 participants over 100 blocks of 
practice in which the value of the parameter c2 varies according to 
a beta distribution with mean of .5. 
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Figure 5. Results for response times (RTs) for both the algo-. 
rithm and retrieval strategies for a simulation of 12 items for each 
of 18 participants over 100 blocks of practice in which the value of 
the parameter c2 varies according to a beta distribution with mean 
of.5. 

figure are limited to trials beyond the halfway point of the 
practice interval during which the strategy transition oc- 
curred. This point is indicated by the change from solid to 
hatched lines in the retrieval fit. The hatched line is simply 
an extrapolation from the solid-line fit. The algorithm fit is 
also based only on the data prior to the halfway point of the 
strategy transition. 

For the RTs, the concave downward deviation from the 
power-function fit for the retrieval strategy reflects the fact 
that items with higher retrieval strengths initially shift to 
retrieval earliest, and they also have the fastest RTs (be- 
cause RT is a direct function of strength). Thus, although 
the power function holds at the item level within each 
strategy, the average of the retrieval trials during roughly 
the first half of the strategy-transition interval has faster RTs 
than would be predicted on the basis of an extrapolation of 
the power-function fit to the average of the retrieval trials 
after the midpoint of the strategy transition. The power 
function holds for the average algorithm data for almost the 

5 Logging at the individual-items level and then averaging is 
mathematically equivalent to taking the geometric mean (i.e., 
multiplying at the item level and taking the nth root, where n is the 
number of items) and then taking the log of the result. It is possible 
to prove that if the power function holds for the individual-item 
data, it also holds for the geometric mean of the data (provided that 
asymptote effects on the fits are negligible and can be ignored). In 
contrast, taking the arithmetic mean and then logging does not 
guarantee a power function except in the unrealistic special case in 
which the rate parameter for each individual item is identical. 
However, note that Wixted (personal communication, January 9, 
1997) demonstrated through simulation that arithmetic averaging 
nevertheless preserves the power-function form almost exactly, 
provided (a) there are no strong ceiling or floor effects in the data, 
(b) there are more than just a few observations being averaged, and 
(c) the distribution of parameter values of the averaged power 
functions do not have extremely large variance (a condition that 
probably holds in most real data sets). 
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approach asymptote within the practice interval over which 
data are collected (see Newell & Rosenbloom, 1981). 

3. Rate parameters of the best fitting power functions 
for the RT are smaller than those for the SD for both the 
algorithm and the retrieval strategies. 

These predictions are expressed in the following equa- 
tions and inequalities: 

RTalg = bl ( t r  + p)-kl 

SDalg = b2(tr + p)-k2 

RTret = b3(tr) -k3 

SDret = b4(tr) k4 

kl < k 2  

Figure 6. Results for standard deviations (SDs) for both the 
algorithm and retrieval strategies for a simulation of 12 items for 
each of 18 participants over 100 blocks of practice in which the 
value of the parameter c2 varies according to a beta distribution 
with mean of .5. 

entire simulated practice interval. Only for the last few 
algorithm trials is there a slight trend for the regression 
model to underpredict the simulated algorithm data. 

The analogous concave downward deviation from log-  
log linearity for the SDs is also a result of the fact that 
higher strength items make the transition to retrieval first. 
Recall that the within-items SD decreases as a power func- 
tion of practice (see Simulation for a single item). This 
decrease is a direct result of corresponding increases in 
strength with practice. Thus, if higher strength items make 
the transition to retrieval first, the within-items (as well as 
the between-items) component of the SD for those items is 
smaller than would be expected if all items were solved by 
retrieval at that same point during practice. 

A Regression Model Based on the CMPL 
Simulations 

The simulations validate a relatively simple mathematical 
version of the CMPL model that can be fit to data using 
standard least squares regression techniques. The regression 
model embodies the following constraints: 

1. The power function holds for both the RTs and SDs 
for the algorithm across essentially the entire practice inter- 
val. A different power function holds for the RTs and SDs 
for the retrieval strategy after about the halfway point of the 
transition interval. 

2. The previous learning parameter of the generalized 
power function (Equation 1) can take positive values for the 
algorithm for both the RTs and SDs. Previous learning 
should be set to zero for the retrieval RTs and SDs. Even 
though asymptotes for RTs must be in principle some pos- 
itive value, they can be assumed to be zero with no detect- 
able decrement in quality of fit, given the reasonable as- 
sumption (for most experimental tasks) that the RTs do not 

k3 < k4, 

where bl through b4 are intercept parameters, kl through k4 
are rate parameters, and p is the amount of previous learning 
for the algorithm. 

Finally, note that, according to the CMPL model, overall 
RT for a given practice block is governed by the mixture 
equation RT = P(RT~lgo~ithm) + (1 - P) (RTre~eval), where 
RT~go~ithm and RTretriev~ are the practice functions describ- 
ing the algorithm and retrieval means for that practice block 
and P is the proportion of trials on the which algorithm is 
selected. Similarly, the overall variance on a given practice 
block is governed by VAR = P(VAR~go~ithm) + (1 - 
e ) (VmRre t r i eva l )  + P(1 - e ) (RTalgor i thm - RTrenieva02. 
However, the CMPL currently does not strongly constrain P 
as a function of practice block (because the parameter c2 
could in fact vary according to any number of possible 
distributions), and thus it is not possible to fit the model to 
the overall RT or the overall variance (or SD). For this 
reason, the simulation results as well as fits of the model to 
data are described solely in terms of RTs and SDs for each 
separate strategy. 

Exper iment  1 

A pseudoarithmetic task, pound arithmetic, was used to 
provide a direct empirical comparison of the two models. 
Two types of pound arithmetic problems were constructed 
using a simple arithmetic series in which the third element 
of the series is the difference between the first two elements, 
plus l, added to the second element. For example, the third 
element of the specific number sequence 9, 15, ?, is [(15 - 
9) + 1] + 15 = 22. In Type 1 problems, the third element 
of the series was unknown (e.g., 9 # 15 = __). In Type 2 
problems, the second element of the series was unknown 
(e.g., 9 # __ = 22). Problems were presented in a traditional 
arithmetic format (as in the example above) with a blank 
holding the place of the missing element, and with the # 
symbol used to hold the place of the arithmetic symbol. 
Participants were taught a three-step algorithm, as shown 
above, for solving Type 1 problems and a related four-step 
algorithm for solving Type 2 problems. 
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After  the practice phase, participants were tested on the 
exact problems seen during practice (no-change problems),  
on type-change problems (i.e., a Type 1 problem seen 
during practice was presented as a Type 2 problem at test), 
and on new problems not seen during practice. The type- 
change problems at test al low exploration of  the specificity 
of  the problem representation that is formed during practice. 
As is evident in Figure 1, the CMPL model  assumes a 
unidirectional association between problem and answer 
nodes and thus predicts that learning that occurs during the 
practice phase should not transfer to new problems or even 
to type-change problems, at test. A comparison of  the new 
problems condition at test with performance at the begin- 
ning of  practice should also allow determination of  whether 
there was any general algorithm speedup during practice 
that was not directly related to speedup on individual prob- 
lems. General  speedup in the algorithm is not predicted by 
the CMPL model  (although problem-specific speedup 
clearly is predicted). Neither general nor problem-specific 
algorithm speedup is accommodated by a strict interpreta- 
tion of  the instance theory as developed in Logan (1988). 

M e ~ o d  

Participants. Twenty-one participants from an introductory 
psychology course participated in the experiment for credit. Two 
of these participants were dropped because they failed to attend all 
of the practice sessions. An additional participant's strategy- 
probing data revealed that no transition to retrieval occurred during 
the course of practice. Thus, a total of 18 participants attended all 
sessions and showed a transition to retrieval with practice. The 
data from the single no-transition participant were also preserved 
for separate analysis. All participants were tested on IBM-type 
personal computers, programmed with the Micro Experimental 
Language (MEL) software (Schneider, 1988). 

Apparatus and materials. Three subsets of 6 pound arithmetic 
problems were constructed. Within each subset, there was 1 prob- 
lem with each of six left-side numbers (3-8), and there was at most 
1 problem with each of nine middle numbers (11-19), and at most 
1 problem with each of 18 right-side numbers (18-35). Three 
master sets of 12 problems were then created, one from each of the 
two-way combinations of the three subsets of six. Six experimental 
problem sets were then created, two from each master set (see 
Appendix A). One of the two problem sets created from each 
master set had one subset of 6 problems written as Type 1 prob- 
lems (e.g., 4 # 17 = __), and the other subset was written as Type 
2 problems (e.g., 3 # __ = 36). The other problem set reversed the 
problem types (e.g., a Type 1 problem became a Type 2 problem). 
Each participant solved problems from only one experimental 
problem set during practice. Thus, each participant saw 12 prob- 
lems during practice, 6 Type 1 problems, and 6 Type 2 problems. 
Either three or four participants were given practice on each of the 
six problem sets. During subsequent immediate and delayed trans- 
fer tests, all participants solved all 18 problems presented as both 
Type 1 problems and Type 2 problems. 

Procedure. The experiment involved six sessions, the first 
three on Monday, Wednesday, and Friday of 1 week, two addi- 
tional sessions on Monday and Wednesday of the following week, 
and a final session on the Wednesday 6 weeks after the fifth 
session. Each session lasted 40 to 60 rain. Participants were tested 

in groups of up to four. At the beginning of the first session, the 
participants were given an example sheet describing the algorithms 
for Type 1 and Type 2 problems and an example problem worked 
out step by step for each problem type. The experirnenter worked 
these example problems on a blackboard, with the participants 
following along using the example sheet. The participants were 
then given six problems (three Type 1 problems and three Type 2 
problems) to work independently using paper and pencil (these 
problems were different than those used in the main experiment). 
When the participants completed the problems, the experimenter 
checked the results for accuracy and made corrections where 
necessary, making it clear to the participant what the errors were 
and what they should do differently to correct them. From this 
point on, participants performed the task independently at their 
own computer without the benefit of pencil or paper, although they 
were allowed to take the algorithm sheet with the example prob- 
lems with them to the computers. For the remainder of the first 
session, participants performed nine blocks of problems using the 
computer, where each block was one exposure to each of the 12 
problems, randomly ordered, in the participant's practice set. Prob- 
lems were presented one at a time in the middle of the screen. 
Participants entered the two-digit answer using a number keypad 
on the right-hand side of the computer keyboard. They were 
instructed to work as fast as possible while being accurate. They 
were told that they could rest briefly between blocks of problems. 
Latencies were collected from the onset of the problem to the 
pressing of the first digit of the answer (the initiate RT) and from 
the pressing of the first digit of the answer to the pressing of the 
second digit of the answer. 

Following one third of the problems, participants were probed 
for the strategy that they used. On these trials, a screen with three 
options was displayed below the problem after they pressed the 
second digit of the answer. The options instructed the participant 
to press a special key marked A if they used the algorithm that they 
were taught to solve the problem, to press a key marked R if they 
retrieved the answer directly from memory (retrieval of 2 ×  4 = 
8 was used as an example of what was meant by direct retrieval), 
and to press a key marked O if they used some other strategy that 
did not correspond closely to either of the other options. Across 
every set of three consecutive blocks, each problem was probed 
once. Four problems were probed per block. Problems probed on 
each block were randomly determined, subject to the preceding 
constraints. The participant's strategy response, as well as the 
latency from the onset of the strategy options screen to the pressing 
of the response, were collected. 

The second, third, fourth, and fifth sessions consisted of 15, 21, 
24, and 21 blocks of problems, respectively, presented on the 
computers as described previously. The transfer test was given 
immediately after the practice segment of the fifth session. The test 
consisted of 3 blocks, each block consisting of one exposure to 
each of the 18 problems shown as both types, for a total of 36 
problems per block. Thus, there were three test conditions for both 
Type 1 and Type 2 problems: a no-change condition; a type- 
change condition, in which a Type 1 problem during practice (e.g., 
4 # 17 = __) was presented as a Type 2 problem (e.g., 4 # __ = 
31), and the reverse; and a new problems condition in which 
number combinations not seen during practice were presented. 
During the test, participants were probed after every problem, in 
the manner described above. The delayed-transfer test was given 
during the sixth session and was exactly the same as the 
immediate-transfer test, with the exception that no additional prac- 
tice was given prior to the delayed test. 
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Results and Discussion 

Primary analyses included only the 18 participants who 
reported a strategy transition with practice. Results for the 
single no-transition participant are discussed at a later point. 
Results for Type 1 and Type 2 problems were remarkably 
similar. There were no reliable problem-type differences in 
terms of error rate, rate of transition to retrieval, or RTs. 
Thus, all analyses reported later were collapsed across this 
variable. Overall error rates were. 109, .065, .055, .029, and 
.019 in Sessions 1, 2, 3, 4, and 5, respectively. A within- 
subjects analysis of variance (ANOVA) with a single factor 
of session (1-5) indicated a reliable decrease in error rate 
across session, F(4, 17) = 11.1, p < .001. All subsequent 
analyses were performed on data from correctly solved 
problems. 

The strategy-probing results are shown in Figure 7, col- 
lapsed over participants and problems and over consecutive 
three-block sequences across which each problem was 
probed once. Practice was successful in creating a transition 
to retrieval. By about Block 60, retrieval was the reported 
strategy on nearly all trials. There were relatively few "oth- 
er" responses, a result that is consistent with the CMPL 
prediction that pure algorithm and retrieval strategies were 
the only two strategies that are used in this task. For 90 of 
the 216 items across the 18 participants (41%), the transition 
was a step function. The algorithm was used for an initial 
number of trials, and retrieval was used exclusively there- 
after. For the remaining items, the transition was not a step 
function, although in the majority of these cases there were 
very few blocks of practice between the first retrieval re- 
sponse and the last algorithm response. 

Practice: Instance theory fits. Figure 8 shows the log 
RT and log SD averaged across participants and problems, 
plotted as a function of log block. Also shown in these 
figures are the best fitting power functions as predicted by 
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Figure Z Proportion of algorithm, retrieval, and other responses 
as a function of practice in Experiment 1. 
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Figure 8. Instance theory fits to the response time (RT) and 
standard deviation (SD) data of Experiment 1. 

the instance theory. Overall, r 2 for the combined RT and SD 
fits was .94. Note the systematic deviations of the observed 
from the predicted values for both the RT and SD, analo- 
gous to those observed by Logan (1988) for the alphabet 
arithmetic task. In the early stages of practice, the predicted 
values substantially overestimate the actual values (by a full 
second or more). During the middle stage of practice, the 
predicted values again overestimate the observed values. By 
the end of practice, the predicted values again overestimate 
the observed values. Also, as with Logan's (1988) alphabet 
arithmetic data, the deviations from linearity are more ex- 
treme for the SDs than for the RTs. 

The instance theory prediction that the rate parameters for 
the RTs and SDs are the same (Logan, 1988) was tested by 
fitting three-parameter power functions, which included a 
parameter for the asymptote, separately to each participant's 
RT and SD data. Sixteen of the 18 participants showed 
steeper rate estimates for the RT (M = - .505) than for the 
SD (M = -0.435), a difference that is strongly reliable by 
a binomial sign test (p < .01), disconflrming this prediction 
of the theory (but see Logan & Etherton, 1994, for a 
discussion of conditions under which this prediction might 
not be expected to hold). Note that the CMPL model makes 
the prediction that the rate estimate for the SDs are greater 
than that for the RTs. However, this prediction applies only 
within each individual strategy. The result presented here 
for the overall data is thus not inconsistent with that model. 

Practice: CMPLfits. Fitting the CMPL model requires a 
methodology that allows trials on which the algorithm was 
selected and trials on which retrieval was selected to be 
evaluated separately. In the CMPL model, one and only one 
of the strategies is selected for each trial. The model also 
assumes activation of a unique subgoal representing the 
selected strategy, and it is reasonable to assume that these 
representations are consciously accessible and reportable. 
Thus, the model predicts that participants should be able to 
reliably report which of the two strategies was employed on 
a given trial. 
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One approach to dividing the trials by strategy is to 
examine only the data on which strategy probes were col- 
lected. However, because strategy probing took place for a 
given item only once every three trials, this approach would 
eliminate two thirds of the data. An alternative is to take 
advantage of the fact that most items showed an abrupt 
strategy transition to retrieval as a way to group trials that 
were not probed into those that with a high probability 
involved the algorithm or with a high probability involved 
retrieval. Those trials can then be added to the data on which 
there were strategy probes. To provide a systematic and 
objective basis for making this grouping, a logistic function 
was fit to strategy-probe data separately for each item for 
each participant. The logistic function has the form 

p(ret) = 1 - 1/{1 + e x p [ ( B L -  g)/h]}, 

where p(ret) is the predicted probability that the retrieval 
strategy is used, and g and h are scaling parameters, and BL 
is the practice block. To fit logistic functions to the strategy 
data, strategy-probe results were coded with a value of 0 if 
"algorithm" or "other" response was given and with a value 
of 1 if a "retrieval" response was given. (The same analysis 
ignoring "other" responses yielded equivalent results.) 
Thus, for each item for each participant, the data consisted 
of up to 30 zeros and ones across 90 blocks of practice (the 
value was not always 30 because trials on which the re- 
sponse was incorrect were eliminated from the analysis). 

The following filtering procedure was then employed for 
selecting algorithm trials. First, the practice block corre- 
sponding to predicted retrieval probabilities of .01 (BLmin) 
were computed based on the logistic fits to each item. All 
trials that occurred before BLmin for a given item were then 
categorized as algorithm trials, with the exception of a small 
number of trials on which the retrieval strategy was explic- 
itly indicated by the strategy-probing data. For block values 
greater than BLmin, only trials on which strategy probing 
directly showed that the algorithm was used were selected. 
The filter for retrieval trials was exactly analogous to that 
for algorithm trials, but in the reverse direction, such that all 
nonprobed trials that occurred after BLmax (retrieval prob- 
abilities of .99) for a given item were categorized as re- 
trieval trials, with the exception of a small number of trials 
on which the algorithm strategy was explicitly indicated by 
the strategy-probing data. 

Figure 9 shows the results for RTs and Figure 10 shows 
the results for SDs, plotted in log-log coordinates. Best 
fitting CMPL functions are also shown for both strategies in 
both figures. The statistical fit for the algorithm trials was 
limited to trials prior to the halfway point of the transition 
interval, and the fit for retrieval trials was limited to those 
past the halfway point of the transition interval. The overall 
r 2 for the combined fit to the RT and SD data was .94, 
equivalent to that of the instance theory. It is important to 
note also that the systematic visual deviations from the 
power function that were clear in the instance theory fits to 
the overall data are no longer present when data are fit 
separately by strategy. 

Two additional patterns in the data were consistent with 
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Component power law theory fits to the response time 
(RT) data for the algorithm and retrieval strategies in Experiment 
1. 

the predictions of the CMPL model. First, there was a slight 
concave downward deviation from the power functions fits 
in the RT and SD data for the retrieval strategy prior to 
about the halfway point of the strategy transition. Second, 
the rate estimates for the SD fits were greater for both the 
algorithm and retrieval strategies than they were for the 
corresponding RT fits, although this effect was not statisti- 
cally reliable. 

In summary, the CMPL model provides fits that are 
equivalent to those of the instance theory in terms of r 2 and 
superior in terms of the visual correspondence with the data. 
Further, the CMPL accomplishes these fits with a smaller 
number of datum points on average for each mean RT and 
SD and thus in the context of more intrinsic noise. It is 
important to note, however, that more free parameters were 
required for the CMPL fits (nine) than were required for the 
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deviation (SD) data for the algorithm and retrieval strategies in 
Experiment 1. 
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instance theory fits (five). In Experiment 2 the two theories 
are compared in a context that reverses this free-parameter 
inequity. 

Practice: RT results for the no-transition participant. A 
supplemental analysis was performed comparing the RT 
results for the 18 participants who reported a transition to 
retrieval with those of the single participant who reported 
using the algorithm almost exclusively throughout the five 
practice sessions (see Figure 11). RTs are collapsed across 
consecutive three-block sequences for the no-transition par- 
ticipant to reduce noise. The deviations from the power 
function that are clear for the transition participants are not 
evident at all for the no-transition participant. This result is 
as predicted by the CMPL model; because no strategy 
transition occurred for this participant, no deviation from 
power-function speedup should be present. Note also that 
although the no-transition participant was one of the fastest 
at solving problems initially, his performance at the end of 
practice was the slowest among all 19 participants. This 
effect provides confirming evidence for the claim based on 
the strategy-probing data that no strategy transition occurred 
for him. The instance theory model as developed in Logan 
(1988) assumes a constant distribution of algorithm finish- 
ing time, and cannot account for the speedup in pure algo- 
rithm execution time for this participant (provided one 
accepts that the strategy-probing results for this participant 
are valid). 

Test. Results of the delayed test were generally consis- 
tent with those of the immediate test. These results are 
described in Rickard and Bourne (1995) and are not dis- 
cussed further here. The proportion of trials on which each 
of the three strategies was used in the three immediate test 
conditions is shown in Figure 12, collapsed across blocks. 
No-change problems exhibited a high proportion of retrieval 
responses, which is not surprising given the complete tran- 
sition to retrieval indicated for these problems during prac- 
tice. In contrast, the algorithm was reported in most cases 
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Figure 11. Response time (RT) results for the single no- 
transition participant in Experiment 1, with the best fitting power 
function (including asymptote parameter). 

Figure 12. The proportion of trials on which each of the three 
strategies was reported in the three immediate test conditions of 
Experiment 1, collapsed across block. 

for new and type-change problems. A planned contrast on 
the proportion retrieved comparing the no-change condition 
with the other conditions was highly significant, F(1, 17) = 
323, p < .001, but a second planned contrast comparing the 
type-change and new problems conditions was not reliable, 
F(1, 17) = 3.08, p = .088. 

Error proportions and RTs at test showed similar results. 
The overall error proportions (collapsed across blocks and 
strategies) for the no-change, type-change, and new prob- 
lems conditions were .024, .250, and .284, respectively. The 
large difference between no-change problems on one hand 
and type-change and new problems on the other hand was 
strongly reliable, F(1, 17) = 53.8, p < .001, but the differ- 
ence between type-change and new problems was not, F(1, 
17) < 1. The RTs are shown in Figure 13 as a function of 
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Figure 13. Response times (RTs) for the three conditions of the 
immediate test of Experiment 1, collapsed across block. 
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block and test condition. An ANOVA revealed reliable 
effects of test condition, F(2, 17) = 42.6, p < .001; and 
block, F(2, 17) = 6.68, p = .004; and of the interaction 
between these variables, F(4, 17) = 5.82, p < .001. The 
interaction reflects greater speedup across the blocks of test 
in the new problems and type-change conditions than in the 
no-change condition. Contrasts showed that RTs in the 
no-change condition were reliably faster than in the type- 
change and new problems conditions, F(1 17) = 84.05, p < 
.001, but there was no evidence of any difference between 
the type-change and new problems conditions, F(1, 17) = 
1.21, p = .28. 

In summary, consistent with the assumptions of the 
CMPL model, the transition to retrieval was quite specific to 
the problems on which participants practiced. Even reversed 
versions of the practiced problems (type-change problems) 
benefited little if at all from practice (for related transfer 
results in standard arithmetic, see Rickard and Bourne, 
1995; Rickard and Bourne, 1996; and Rickard, Healy, and 
Bourne, 1994). These findings lend support to the claim that 
problem and answer nodes are distinctly represented and 
that the association that is strengthened with practice is 
unidirectional from the problem to the answer. Note that 
instance theory can also predict the observed performance 
difference between no-change and new problems. It would 
also be able to account for the failure of practice to transfer 
to type change problems given the added assumption that 
instances are unidirectional. 

The above transfer results, as well as similar results in 
standard arithmetic reported by Rickard et al. (1994; see 
also Rickard and Bourne, 1996) are inconsistent with a 
plausible alternative model of the representation of arith- 
metic facts proposed by Campbell (1997), which assumes 
that complementary problems in multiplication and division 
(e.g., 4 × 7 and 28/7) access the same representation. 
However, the results reported by Campbell do suggest some 
currently unidentified type of relatedness between comple- 
mentary arithmetic problems. 

Two additional effects in the test data are worth consid- 
ering. First, there was a substantial increase in proportion of 
algorithm responses for no-change problems at test com- 
pared to the last session of practice (from less than .01 
during the last session of practice to about .1 during the 
immediate tes0. There was also a reliable increase in RTs 
for no-change problems at test compared to the last session 
of practice, even when considering only test problems on 
which participants reported using the retrieval strategy (ap- 
proximately 2,000 ms at test versus around 1,200 ms at the 
end of practice). Analogous increases in RT at test were 
observed by Pdckard et al. (1994) for standard arithmetic. 
These performance decrements at test are not predicted by 
the current versions of either the instance theory or the 
CMPL model. It remains to be demonstrated whether either 
approach can be extended to account for them. 

Second, a comparison of the algorithm RTs from practice 
with RTs for new problems at test provides a rough estimate 
of the amount of speedup that reflects general algorithm 
speedup, and the amount that reflects speedup in executing 
the algorithm for specific problems. The CMPL model 

predicts problem-specific speedup but no general speedup, 
and the instance theory as developed in Logan (1988) as- 
sumes no algorithm speedup of either type. If algorithm 
speedup is solely general, then the RTs for algorithm trials 
on the last few blocks of practice on which they were 
reported should be roughly the same as the RTs for new 
problems at test. Alternatively, if the algorithm speedup is 
solely problem specific, then RTs for new problems at test 
should not be different from RTs on the first block of 
practice. Algorithm RTs were around 13,000 at the begin- 
ning of practice. On the last practice block on which the 
algorithm was reported at least 10% of the time, algorithm 
RTs were around 3,600 ms. These compare to RTs for new 
problems on the first block of the immediate test of around 
8,000 ms. Thus, there appears to have been both general 
speedup (not predicted by either model) and specific 
speedup (predicted only by the CMPL model) in algorithm 
execution with practice. 

The general speedup effect is not particularly surprising 
in hindsight because two similar but distinct algorithms 
were learned by participants (one for Type 1 and one for 
Type 2 problems) to only a minimal proficiency prior to the 
first block of practice. On the first few practice blocks, it 
seems likely that many participants found it necessary to 
refer to the algorithm example sheets that were available 
throughout practice. This consultation of external informa- 
tion about the algorithm would be much less likely at test, 
providing a candidate account of the general algorithm 
speedup effects. 

Experiment 2 

In Logan' s (1988) alphabet arithmetic experiment, overall 
plots of the addend 2 data showed only negligible deviations 
from power-function speedup and reduction in SD. As ad- 
dend size increased, however, these deviations from log-log 
linearity were increasingly evident. These effects are con- 
sistent with the CMPL model for the following reasons. 
First, the CMPL predicts that strengthening of the memory- 
retrieval strategy occurs independently of any characteris- 
tics of the algorithm (such as addend size). Also, the 
strategy-choice process is the result solely of a local com- 
petition between the first :step of the algorithm and the 
memory retrieval strategy. That is, the number of steps in 
the algorithm, or its global difficulty, does not directly 
influence the strategy-choice process. Given the reasonable 
additional assumption that the connection strengths associ- 
ated with the first step of the algorithm are roughly equiv- 
alent across the set of problems constituting the three ad- 
dend size groups, then the strategy-choice process should 
not be correlated with addend size according to the model. 
In combination, the predictions above lead to the additional 
prediction that the number of trials needed to make the 
transition to retrieval, as well as RTs and SDs for the 
retrieval strategy, should be equivalent for the three addend 
sizes. 

However, the RTs and SDs for the algorithm strategy 
clearly increase as an additive function of addend size. 
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Thus, the CMPL model predicts that the distance between 
the algorithm and retrieval power functions for both the RTs 
and SDs increase with increasing addend size. Finally, if the 
overall data (i.e., data collapsed over strategies) are plotted, 
then it follows that deviations from log-log lineafity are 
increasingly prominent for both RTs and SDs with increas- 
ing addend size. One purpose of Experiment 2 was to 
further test these predictions using the alphabet arithmetic 
task. To assure comparability of this experiment with that of 
Logan (1988; see also Compton & Logan, 1991), the task 
was constructed as a verification task (e.g., F + 3 = 1; true 
or false?). 

A second motivation for this experiment was to compare 
the instance theory and the CMPL model under conditions 
in which the CMPL model requires fewer free parameters. 
This experiment involved training participants on equal 
number of problems with addend sizes of 3, 5, and 7. Under 
these conditions, 15 free parameters, 5 for each addend size, 
are required to fit the instance theory model described by 
Logan (1988). However, the CMPL model embodies sev- 
eral mathematical constraints that can be applied to these 
data that allow it to be fit with a total of only 10 free 
parameters. It is important to note that inclusion of the 
following constraints is required for the regression model to 
be an accurate representation of the predictions of the sim- 
ulation model. First, as discussed earlier, the CMPL model 
requires that the retrieval RTs and SDs are identical for each 
level of addend size. Thus, only a single power function, 
with 2 free parameters (intercept and slope), is needed to fit 
retrieval RTs for all three addend sizes, and only a single 
2-parameter power function is needed to fit retrieval SDs, 
for a total of 4 free parameters for the retrieval strategy. 
Second, because the CMPL model assumes that algorithms 
are a string of successive memory-retrieval events with 
additive characteristics, the power-function intercepts for 
the RTs for the algorithm strategy can be fit with only 2 
parameters; 1 parameter for the intercept for the addend 3 
problems, and a 2nd parameter representing the constant 
increment (in terms of raw RTs) in the intercept for each 
increment in addend size. So far, 6 free parameters have 
been committed. Third, again, because the algorithm is 
assumed to be an additive function of addend size, only a 
single-slope parameter is necessary for the algorithm RTs 
(given the reasonable assumption that the strength parame- 
ter, c2, is equivalent on average over all steps of the algo- 
rithm for a given problem). Fourth, again because the algo- 
rithm RT is assumed to be an additive function of addend 
size, the intercept for the algorithm SDs is constrained to be 
a constant proportion of the intercept for algorithm RTs 
over all addend sizes. Thus, only a single additional free 
parameter is needed to fit the intercept of the algorithm SDs. 
Finally, the slopes of the SDs for the algorithm are also 
constrained to be identical over different addend size, thus 
allowing a single slope parameter for fitting the slopes of 

6 the algorithm SDs. These 9 free parameters, plus a 10th 
that represents previous learning for the algorithm strategy, 
are sufficient to fit the entire practice data set across all 
three addend sizes. The corresponding equations and ine- 
qualities are 

RTalg3 = b 1 (tr + p)-kl 

RTalg5 = (bl  + 2x)(tr + p)-kl 

RTalg7 = (bl  + 4x)(tr  + p)-kl 

SDalg3 = e(b l ) ( t r  + p)-k2 

SDalg5 = [e(b l  + 2x)](tr + p)-k2 

SDalg7 = [e(b l  + 4x)](tr + p)-k2 

RTret3 = RTret5 = RTret7 = b2(tr) -k3 

SDret3 = SDret5 = SDret7 = b3(tr) -k4 

kl < k 2  

k3 < k4 

where bl is the algorithm-intercept parameter for addend = 
3 problems, b2 and b3 are the intercept parameters for 
retrieval RT and SD, p is previous learning, kl through k4 
are the rate parameters, x is the raw RT increment associated 
with each additional step of the algorithm, and e is the 
proportionality constant relating RT and SD for the 
algorithm. 

M e ~ o d  

Participants. Twenty-one participants from an introductory 
psychology course participated in the experiment for credit. Par- 
ticipants were tested on IBM-type personal computers, pro- 
grammed with the MEL software (Schneider, 1988). Twenty-four 
problems (12 tree and 12 false) were constructed (see Appendix 
B): 8 problems with the addend 3, 8 with the addend 5, and 8 with 
the addend 7. Four problems within each addend size were true, 
and 4 were false. 

Procedure. There were four experimental sessions, the first 
three on Monday, Wednesday, and Friday of 1 week, and the 
fourth on Monday of the following week. Each session lasted 
30-45 min. Participants were tested in groups of up to 4. At the 
beginning of the first session, the participants were introduced to 
the alphabet arithmetic task by way of one true and one false 
problem worked on a blackboard by the experimenter (neither of 
these problems were in the stimulus set). Participants then per- 
formed the task independently at their own computer. During the 
first session, participants performed 15 blocks of problems, where 
each block was one exposure to each of the 24 problems in the 
participant' s practice set. Problems were presented one at a time in 
the middle of the screen. Participants entered true or false using 
specially marked adjacent keys on the numeric keypad. Partici- 
pants were instructed to use either the pointer finger of both hands 
(one for true and one for false) or the pointer and index finger of 
one hand, whichever was more comfortable. The true and false 
keys were counterbalanced across participants. Participants were 
instructed to work as fast as possible while being accurate. They 
were told that they could rest briefly between blocks of problems. 

6 These last two constraints do not strictly fall out of the math- 
ematics because of the Complicating factor of the between-items 
component of the variance, which is not an exact power function. 
However, simulation results show that in practice these constraints 
nevertheless hold almost exactly. 
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The participant's answer for each problem was collected. Strategy 
probes (algorithm, retrieval, or other) were collected on one third 
of the trials as in Experiment 1. The second, third, and fourth 
session consisted of 21, 24, and 27 blocks of problems, 
respectively. 

Results and Discussion 

True problems were solved slightly faster and slightly 
more accurately than false problems. These effects, how- 
ever, did not enter into any interactions with other variables, 
and thus data were collapsed across the true-false distinc- 
tion in all of the following analyses. Error rates for addend 
3 problems were .058, .042, .044, and .045 in sessions 1, 2, 
3, and 4, respectively. For addend 5 problems these values 
were .083, .099, .077, and .064, and for addend 7 problems 
they were .090, .072, .072, and .070. A 4 (session) by 3 
(addend size) within-subjects ANOVA performed on the 
proportion of errors indicated a reliable increase in error 
rates with increasing of addend size, F(2, 20) = 7.22, p = 
.002. There was no reliable effect of session, F(3, 20) = .48, 
p = .699, and no reliable interaction of these two variables, 
F(6, 20) = 1.77, p = .  111. All analyses reported later were 
limited to correctly solved problems. 

The strategy probing results are shown in Figure 14, 
collapsed over participants, problems, and addend size. 
Practice appears to have been successful in creating a tran- 
sition to retrieval. By about block 60, retrieval was the 
reported strategy on nearly all trials. As in Experiment 1, 
there were very few "other" responses, suggesting that there 
were no intermediate stages in which some third strategy 
was used. A within-subjects ANOVA performed on the 
overall proportion of retrieval responses with a single factor 
of addend size (M = .794, .791, and .799 for addend sizes 
of 3, 5, and 7, respectively) indicating that the number of 
trials needed to make the transition to retrieval was not 
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Figure 15. Instance theory fits to addend = 3 response time 
(RT) and standard deviation (SD) data from Experiment 2. 

influenced by addend size, F(2, 20) < 1. This finding is 
exactly as predicted by the CMPL model. 

Instance theory fits. Figures 15, 16, and 17 show the 
overall log RTs and log SDs for the three addend sizes 
plotted as a function of log block. Also shown in these 
figures are the best fitting power functions as predicted by 
instance theory (Logan, 1988). Systematic deviations from 
the predictions are clearly evident for both the RT and SD. 
Also, as was the case in the alphabet arithmetic data of 
Logan (1988), and as predicted by the CMPL model, the 
deviations become larger with increasing addend sizes. The 
overall r 2 of the instance theory fit over all addend sizes was 
.95. 

The instance theory prediction of identical values for RT 
and SD power-function rate parameters was evaluated sep- 
arately for each addend size by computing the parameter 
estimates separately for each participant, as described in 
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Figure 14. Proportion of algorithm, retrieval, and other re- Figure 16. Instance theory fits to addend = 5 response time 
sponses as a function of practice in Experiment 2. (RT) and standard deviation (SD) data from Experiment 2. 
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Figure 17. Instance theory fits to addend = 7 response time 
(RT) and standard deviation (SD) data from Experiment 2. 

Experiment 1. For addend 3 problems, 15 of 21 participants 
had larger rate estimates for SD than for RT. However, for 
addend 5 and 7 problems, 15 and 14 of the participants, 
respectively, had larger rate estimates for the RT than for 
the SD. These effects for addend 3 and 5 problems were 
reliable by a binomial sign test (ps < .05). This pattern is 
analogous to that obtained by Logan (1988; Experiment 4) 

for alphabet arithmetic. In that experiment, rate estimates 
for the SDs were larger than for the RTs for both true and 
false problems with addend sizes of 2, 3, and 4, but the 
reverse was true for addend 5 size problems. Note also that 
the pound arithmetic task of Experiment 1, which had 
longer algorithm times than any of the alphabet arithmetic 
conditions discussed earlier, exhibited larger rate estimates 
for the RTs than for the SDs. Thus evidence from three 
experiments now suggests that the rate estimates resulting 
from power-function fits to the overall RTs and SDs are not 
necessarily the same, and they further suggest that the rate 
estimates for the RTs increases faster than that for the SD as 
algorithm difficulty increases. This interaction contradicts 
the strict instance theory (Logan, 1988) prediction that 
learning rates are identical for the RT and SD regardless of 
algorithm difficulty. Note, however, that it remains to be 
seen whether this finding is problematic for the instance 
theory approach more generally (see Logan and Etherton, 
1994). 

CMPLfits. RTs and SDs corresponding to the algorithm 
and retrieval strategies were identified using the filtering 
approach discussed in Experiment 1. Figure 18 shows the 
algorithm and retrieval RT results and the best fitting CMPL 
functions for each addend size. Figure 19 shows the results 
for the algorithm SDs, and Figure 20 shows them for re- 
trieval SDs. The overall r 2 for the CMPL fit to the entire 
data was .97. As in Experiment 1, fits are limited for each 
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CMPL model, there was absolutely no evidence that 
retrieval-based performance (whether indexed by RTs, SDs, 
or strategy-probing data) depended on addend size. 

General  Discussion 

Figure 19. Component power law theory fits to the algorithm 
standard deviation (SD) data of Experiment 2. 

strategy to the range covered by the solid lines shown in the 
figures. Hatched lines cover ranges for each strategy for 
which there were far fewer observations and thus far more 
intrinsic noise. Note that the systematic deviations from the 
predictions that are clear in the instance theory fits to the 
overall data are no longer evident in the CMPL fits. 

As predicted by the CMPL model, there were concave 
downward deviations from the power-function fits to the RT 
and SD data for the retrieval strategy during the first few 
retrieval trials. Also as predicted by the CMPL model, 
slopes for the SDs were steeper than were those for corre- 
sponding RTs, and unlike Experiment 1, this effect was 
reliable for both the algorithm strategy, F(1, 20) = 4.47, 
p < .05, and the retrieval strategy, F(1, 20) = 5.28,p < .05. 

One additional test was performed to further evaluate the 
CMPL prediction that retrieval RTs and SDs do not vary 
with addend size. Although the regression model that was fit 
to the data embodies this constraint and provided good fits, 
there could still be statistically reliable differences in re- 
trieval RTs that were not evident in that analysis. To explore 
this possibility, an analysis of covariance (ANCOVA) with 
a continuous factor of log block and a categorical factor of 
addend (3, 5, or 7) was performed on the log RTs for 
retrieval. As expected, there was a reliable effect of log 
block, F(1, 20) = 489, p < .0001. However, there was no 
reliable effect of either addend, F(2, 40) = .43, p = .66, or 
of the interaction log block by addend, F(2, 40) = .63, p = 
.54. The same ANCOVA was performed on the log SDs for 
the retrieval strategy to investigate whether addend size 
predicted retrieval-based SDs. There was again a reliable 
effect of log block, F(1, 20) = 69.5, p < .0001, but there 
was no reliable effect either of addend, F(2, 40) = .08, p = 
.92, or of the interaction log block and addend, F(2, 40) = 
.06, p = .94. In sum, then, in line with thepredictions of the 

Two experiments provide new evidence in support of the 
general claim of Logan (1988) and Siegler (1988) that 
practice on skills that originally require execution of se- 
quential algorithms can produce a strategy shift to direct 
memory retrieval (see also, Ashcraft, 1992). However, the 
results from both experiments also suggest that the CMPL 
model may provide a better account of the mechanisms 
underlying this strategy shift than does the version of the 
instance theory proposed by Logan (1988). In both experi- 
ments, the CMPL fits produced equivalent or higher r2s than 
did the instance theory, and these r 2 values were obtained 
despite the fact that the CMPL model must be fit using only 
a subset of the available data. It is important to note that 
fitting the CMPL model required more free parameters than 
did the instance theory for Experiment 1. However, for 
Experiment 2 this inequity was reversed, and the CMPL 
model still provided higher r 2 values. Perhaps the most 
convincing evidence that favors the CMPL model over the 
instance theory is that it exhibited substantially fewer sys- 
tematic visual deviations of the data from the predictions 
across all conditions of both experiments. 

In addition to the good statistical and visual data fits, the 
CMPL model makes several unique predictions that were 
confirmed, including those of no shift from algorithm to 
retrieval for either type reverse or new problems at test in 
Experiment 1, of no deviation from power-function speedup 
for a participant who did not exhibit a strategy shift in 
Experiment 1, of steeper slopes for the SDs than for the RTs 

Figure 20. Component power law theory fits to the retrieval 
standard deviation (SD) data of Experiment 2. 
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within each strategy (reliable in Experiment 2 but not in 
Experiment 1), of concave downward deviations from the 
power function for the retrieval Experiment prior to the 
halfway point of the strategy transition, and of identical 
retrieval-based performance for the three addend sizes used 
in Experiment 2. 

As discussed previously, Logan (1988) suggested a mod- 
ified version of the instance theory to account for the 
deviations from log-log linearity in the overall plots of the 
RTs and SDs. This account assumes that at some point 
during practice, participants shift from a less efficient to a 
more efficient memory strategy. This account cannot be 
ruled out at present. However, it has not been explicitly 
tested to date by actually fitting a modified instance theory 
to the data. It is not immediately obvious that it provides a 
reasonable account of all aspects of the data, such as the 
shape of the deviation from log-log linearity for the RTs 
and SDs, the differences in rate parameter estimates for the 
overall RTs and SDs, or the equal RTs and SDs for the 
retrieval strategy over different addend sizes as observed in 
Experiment 2. Also note that if the hypothesis of a second 
transition to more efficient memory strategy is to be dem- 
onstrated convincingly, some independently validation that 
such a process occurs is needed. At the least, the presence of 
two strategy transitions to retrieval needs to be verified with 
strategy-probing data. 

An important and unique prediction of the instance theory 
that has received support in previous research (Compton & 
Logan, 1991) is that participants, given the opportunity, 
sometimes choose strategy categories that appear to indicate 
that they do indeed execute both the algorithmic and re- 
trieval strategies in parallel. Compton and Logan conducted 
two such experiments, using the alphabet task, that merit 
discussion in detail. In the main experiment, they gave 
participants three strategy report options after selected tri- 
als: (a) counted through the alphabet, (b) remembered the 
answer without counting, and (c) counted and remembered 
at the same time. In a follow-up experiment, they again gave 
participants the first two strategy report options just stated 
and also six additional options: (d) first counted and then 
got the answer by remembering, (e) tried to remember and 
then got the answer by counting, (f) tried to count and 
remember simultaneously and got the answer by counting, 
(g) tried to count and remember simultaneously and got the 
answer by remembering, (h) used a strategy that is not listed 
above, and (i) made a mistake or did not know how to solve 
the problem. 

In the main experiment, participants chose Option a on 
20% of the problems, Option b on 56% of the problems, and 
Option c on 24% of problems. Participants typically chose 
Option c (simultaneous counting and remembering) during 
the middle of the strategy-transition interval, and the asso- 
ciated RTs were in between those for the pure algorithm and 
the pure memory-retrieval strategy-response categories. 
These results are consistent with the instance theory inter- 
pretation that these strategy responses reflect concurrent 
execution of the algorithm and retrieval strategies. Such 
results may prove problematic for the CMPL model and 
need to be addressed in future research. However, there are 

several factors that should lead one to view the Compton 
and Logan (1991) results with at least some skepticism. 
First, in the follow-up experiment, where the eight strategy 
report options listed earlier were included, the percentage of 
simultaneous strategy reports (Options f and g combined) 
fell to 9%, and were not reported at all by about half of the 
participants. Each of the other strategy options in the 
follow-up experiment can potentially be accounted for by 
assuming some sort of serial strategy execution that is not 
inconsistent with the broad assumptions motivating the 
CMPL model. 7 Second, the percentage of trials on which 
participants reported Options a and b in the follow-up 
experiment was very close to the percentage of trials on 
which those options were reported in the main experiment. 
Also, the sum of the percentages for Options d through h in 
the follow-up experiment is very close to the percentage of 
trials on which participants chose Option c in the main 
experiment. These results suggest the possibility that be- 
yond Options a (counted) and b (remembered), participants 
have difficulty accurately introspecting on their thought 
processes. That is, it may be that thought processes that in 
fact did not reflect simultaneous strategy execution but 
rather on which participants had difficulty accurately intro- 
specting were grouped into Option c in the main experiment 
and that the analogous set of trials were distributed roughly 
evenly across Options d through h in the follow-up exper- 
iment. The possibility that participants have difficulty mak- 
ing accurate introspections on some trials is acknowledged 
by Compton and Logan (1991) who stage that, "Given the 
authors' experience with the task, it seems likely that sub- 
jects are not able to make find distinctions about the strat- 
egies they are using when the both count and remember on 
the same trial" (p. 156). In summary, although the Compton 
and Logan strategy-probing results are interesting and im- 
portant, follow-up research seems warranted before making 
a strong conclusion that concurrent strategy execution is 
occurring. 

Issues in Automaticity and Attention 

The instance theory claims that automatic processing 
reflects direct retrieval of instances from memory. The 
CMPL model, in contrast, claims that there is a continuum 
from more goal-driven to more stimulus-driven retrieval 
from memory. For example, on the fn'st few retrieval trials 
for a given item in the experiments described in the article, 
the CMPL model predicts that initial selection of the re- 
trieval subgoal is necessary for the retrieval problem node to 
be able to win the competition (i.e., for retrieval to occur). 
Thus, retrieval in this case is strongly goal influenced. In 
contrast, consider the last few algorithm trials prior to the 

7 Note that the CMPL as presented in this article assumes either 
algorithm or retrieval execution and does not allow for the possi- 
bility of serial execution of (for example) retrieval followed by 
execution of the algorithm as a check. However, such sequential 
strategy execution would not be inconsistent more generally with 
the core claim of the model that algorithm and retrieval strategies 
are not executable concurrently. 
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transition to retrieval. As discussed in the Simulations sec- 
tion, the CMPL model predicts that on some of these trials 
the retrieval subgoal is selected initially but that the problem 
node for the first step of the algorithm is still selected, in 
turn forcing a shift of activation at the subgoal level from 
the retrieval to the algorithm subgoal in order to maintain 
internal coherence in the system. In this case the retrieval 
event associated with the first step of the algorithm is almost 
purely stimulus driven. Indeed, it occurs despite the initial 
goal to execute the direct retrieval strategy. This stimulus- 
driven retrieval in the CMPL model has one of the attributes 
typically associated with automaticity; namely, it can pro- 
ceed to completion under some (unusual) circumstances 
largely outside of the control of attention (i.e., outside of the 
influence of goal-based processing). However, stimulus- 
driven retrieval in the model also has several properties that 
contrast from the model view of automaticity. In particular, 
(a) whether of not retrieval is automatic is determined not 
by the absolute strength associated with retrieval for that 
item but rather by the relative strength of that item to all 
other competing retrieval candidates, and (b) stimulus- 
driven retrieval does not reflect operation of a form of 
automatic memory retrieval that is qualitatively distinct 
from other memory processes. In other words, the same 
types of representations and connection pathways are in- 
volved in both stimulus-driven and in goal-driven retrieval 
(see Cohen et al., 1990, for related points in their connec- 
tionist model of the Stroop effect.). 

The CMPL also differs from the instance theory in that it 
predicts that even relatively stimulus-driven, or automatic, 
retrieval cannot take place in parallel for two or more items 
(or for two or more interpretations of a given stimulus item). 
Multiple candidates for retrieval are activated in parallel 
during early stages of the retrieval. However, selection of 
one response always results in suppression of all other 
competing responses. This theoretical claim is consistent 
with dual task studies of the psychological refractory period 
(PRP) conducted by Pashler and colleagues (see Pashler, 
1993, for a review), which show that response selection 
even for two very simple tasks cannot occur concurrently. 
For example, the decision of whether a tone is high or low 
does not occur concurrently with the visually based decision 
such as whether a stimulus is a letter or not, even when the 
response modalities for these two tasks do not interfere (i.e., 
when the response for the tone is verbal and that for the 
visual stimulus is manual). This result holds even after 
2,500 trials of practice (Dutta & Walker, 1995). Other 
experiments in which one task was a tone task and the 
second task involved either retrieval of a paired-associate 
response from memory or recognition of a previously pre- 
sented word yielded similar results (Carder & Pashler, 
1995). The results of Pashler and colleagues map naturally 
to the CMPL model if one assumes that their response- 
selection stage, at which the dual-task bottleneck occurs, 
corresponds roughly to processing within the subgoal and 
problem level of the simulation model. 

The PRP results appear to be problematic for the instance 
theory. One reasonable counterargument, however, is that 
the memory tasks used by Carrier and Pashler (1995) are not 

automatic. Consider, for example, the possibility that rec- 
ognition of words in the Carrier and Pashler (1995; Exper- 
iment 2) study involved explicit episodic retrieval of previ- 
ous exposures to the words during training. The instance 
theory applies to implicit (i.e., not episodically mediated) 
retrieval (Logan, 1990) and thus would not necessarily be 
inconsistent with the finding that episodic retrieval cannot 
occur concurrently with the tone task. The critical PRP 
experiment needed to test the instance theory, in which 
participants are first given extensive practice on the memory 
task until there is clear evidence of automatized retrieval 
and are then tested using a PRP task, remains to be done. 

The CMPL model treats attention in much the same way 
that Cohen et al. (1990) treat it in their connectionist model 
of the Stroop effect. In both models, attentional modulation 
is graded and is mediated through the same types of con- 
nections through which other nodes in the network are 
connected. One way in which the CMPL model differs from 
the Cohen et al. model is that the subgoal nodes (the rough 
equivalent of the Cohen et al. attentional units) for each 
individual strategy are not "clamped on" to an active state 
for the duration of each retrieval event. Rather, they accrue 
activation from the general task goal and from the stimuli as 
cycling proceeds. The assumption that subgoal nodes are 
clamped on is reasonable for the Stroop task. It would also 
be a viable alternative approach to the current tasks. One 
could argue that participants adopt a strategy of first select- 
ing the algorithm subgoal prior to each trial, and then after 
sufficient practice, they switch to selecting the retrieval 
subgoal. In this version of the model, the subgoals would 
play a role that is strongly analogous to the modulatory role 
played by the attentional nodes in the Cohen et al. (1990) 
simulation. By leaving the subgoals inactivated at the onset 
of the trial in the simulations reported in this article, I 
effectively assume that participants, throughout practice, 
take a neutral stance with respect to strategy execution at the 
initiation of each trial. That is, they let the information from 
the stimulus, in combination with the relative strengths of 
pathways from the "solve problem" goal to the subgoals 
guide their strategy decision. 

Strategy-Choice Processes 

The question of whether or not retrieval and algorithmic 
processes can be executed in parallel is fundamental and 
relevant to many ongoing lines of research in cognitive 
psychology. If retrieval and algorithmic strategies are exe- 
cuted in parallel and independently, as assumed in the 
instance theory, then scheduling problems (Townsend & 
Schweickert, 1989) in some skill processes are automati- 
cally resolved (or, more accurately, simply do not exist). 
However, if as I claim in this article, strategy-choice pro- 
cesses are critical in such tasks, then many very important 
questions arise as to the mechanisms of strategy choice and 
the various factors which might influence it. A comprehen- 
sive cognitive theory that addresses these questions is im- 
portant for development of human factors models applicable 
in a variety of real-world contexts. 
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The CMPL model makes the simple preliminary claim 
that only item-specific processes (i.e., strength of connec- 
tions from the external stimulus items to the problem nodes) 
and strategy-specific processes (i.e., strength of connection 
from the general solve problem goal to the strategy sub- 
goal), but no other factors, determine strategy choice. The 
item-specific factor is supported by the high degree of 
problem specificity in the transition to retrieval. Both fac- 
tors also receive some support indirectly by the good overall 
fits of the CMPL model to the data sets. Both the item- 
specific and strategy-specific factors have previously been 
demonstrated, along with other factors, in an elegant series 
of studies by Siegler and colleagues in the domain of 
children's arithmetic (Lemaire & Siegler, 1995; Siegler, 
1988). An important goal for future work is to determine the 
relative extent to which these factors along with other 
possible task, environmental, and individual difference fac- 
tors influence strategy choice in adults. 

The CMPL model makes strong and apparently unique 
predictions about the relative effects of what we term local 
and global item-specific algorithm difficulty on the 
strategy-choice process. According to the model, local al- 
gorithm difficulty (i.e., the difficulty Of the first step of the 
algorithm) is relevant to the strategy-choice process. If the 
first step of the algorithm has a relatively high strength for 
a given problem, the transition to retrieval takes longer, 
other factors being equal. However, global difficulty, which 
is most naturally indexed by overall algorithm RTs, has no 
logically necessary correlation with the strategy-choice pro- 
cess, according to the model. The transition to retrieval 
should not depend on overall algorithm difficulty (e.g., the 
number of algorithm steps), provided that the difficulty of 
the first step of the algorithm is held constant. This is 
exactly the state of affairs with respect to the addend size 
variable in Experiment 2, and the data confirmed this pre- 
diction of the model. The generality of the effect merits 
further empirical investigation. 

The CMPL model has many points of contact with the 
adaptive strategy choice (ASCM; Lemaire & Siegler, 1995) 
model of children's strategy choice. Both models assume a 
shift from algorithm to retrieval with practice and both 
assume a nonparallel strategy choice and execution process. 
The current results show that these assumptions appear to 
generalize to adults, at least for some tasks. The models 
differ, however, both in terms of empirical emphasis and in 
some of their core assumptions. The ASCM model has been 
applied to date primarily to account for an impressive va- 
riety of strategy shifts in children's learning. The CMPL 
model currently deals only with the strategy transition from 
algorithm to retrieval, and it focuses more on functional 
form of RTs and SDs of correct trials as they relate to 
practice. It remains to be seen whether the CMPL can be 
extended to cover a broader range of strategy-choice pro- 
cesses and whether the ASCM model can predict the phe- 
nomena that are the focus of this article, such as strategy- 
specific power functions for RTs and SDs. 

As discussed above, the CMPL model assumes that all 
strategy choice reflects a local competition between two- 
candidate memory-retrieval events. In contrast, strategy 

choice in the ASCM model is influenced only by global 
properties of the algorithm, such as overall RT and error 
rate. Data from Siegler and colleagues (see Lemaire & 
Siegler, 1995) demonstrate that a model that focuses only on 
global properties can provide good accounts of strategy 
choice in children's performance (although global versus 
local factors in strategy choice have not to date been directly 
manipulated in their work). Thus, taken as a whole, the 
available data suggest that both local and global algorithm 
factors may be important in strategy choice. It will be 
important in future work to determine the relative influence 
of these two factors in various contexts. 

Generalization of the CMPL Model 

It remains an open question how far basic predictions of 
the CMPL model generalize beyond the tasks explored in 
this experiment. It seems quite likely that it generalizes to 
other arithmetic and related tasks. Rickard (1994) discussed 
results of an arithmetic task by Carlson and Lundy (1992) 
that exhibited a transition toward memory-based perfor- 
mance with practice and also a concave-downward devia- 
tion from log-log linearity that is generally consistent with 
that expected by the model. There is also preliminary evi- 
dence that the model may generalize to other tasks. The data 
from a 10-finger task reported by Seibel (1963, and dis- 
cussed by Newell & Rosenbloom, 1981) show deviations 
from log-log linearity that are characteristic of those pre- 
dicted by the model. In that task, some subset of 10 lights 
was turned on for each trial, and the participant pressed the 
corresponding keys. It is plausible that participants mapped 
lights to the corresponding fingers in a consciously medi- 
ated way initially but later were able to more reflexively 
make their responses. That is, they may have undergone a 
form of transition from an algorithm to direct retrieval. As 
another example, in three experiments by Palmeri (1997), 
stimuli consisting of 6 to 11 dots were presented repeatedly 
for up to 20 practice sessions and 208 repetitions per item. 
I plotted these data, reported in Palmed (1995), separately 
in log-log coordinates for dot patterns of each numerosity, 
for each item type, and for each experiment. The signature 
deviations from log-log linearity predicted by the CMPL 
model are clearly evident for patterns of 10 and 11 dots in 
all three experiments, and also as predicted, these deviations 
become less pronounced as the number of dots decreases. 

It is also encouraging that the CMPL model has points of 
connection with a variety of other skill models, including 
but not limited to the instance theory (Logan, 1988) the 
theories of Siegler and colleagues (Lemaire & Siegler, 
1995), and Anderson (1993), the Stroop model of Cohen et 
al. (1990), and arithmetic fact retrieval and interference 
model such as those of Campbell and Oliphant (1992), 
Rickard, Mozer, and Bourne (1992), and Rickard and 
Bourne (1996). A synthesis among such models should 
ultimately provide a comprehensive account of learning and 
performance in mental arithmetic and related task domains. 
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Implications f o r  the Power  Law o f  Practice 

The power law of practice has been generally accepted to 
be true for overall speedup with practice for any task since 
the seminal paper of Newell and Rosenbloom (1981). The 
data presented in this article present the first empirically 
strong challenge to that claim (note these data were origi- 
nally reported in Rickard, 1994). The CMPL model now 
makes explicit and testable process-based predictions con- 
cerning when the power law holds for both RTs and SDs in 
the overall task, when it does not, and what the functional 
relations between these two measures are when trials are 
evaluated separately by strategy. 

The demonstration that the power law does not hold 
overall for tasks exhibiting a strategy shift from algorithm to 
retrieval raises the questions of why the power law never- 
theless does appear to hold in many other skill domains 
(Newell & Rosenbloom, 1981). As an initial attempt to 
address this question, I propose three classes of skill- 
acquisition tasks to which the power law applies with vary- 
ing degrees of accuracy. First, learning that reflects 
strengthening of a single memory-retrieval event, or of a 
string of sequential retrieval events, yields exact power- 
function speedup in expected RT even at the item level. The 
power function is thus fundamentally a property of 
memory-retrieval practice. Second, there are some tasks, 
such as those explored in this article, that exhibit marked 
and discrete shifts between algorithm and memory retrieval 
strategies. For these tasks, the power law is simply incorrect 
as an empirical law of overall speedup with practice (al- 
though it holds within each strategy and may also yield a 
good approximation when RT differences between the two 
strategies are small). Delaney, Reder, Staszewski, and Ritter 
(in press) have independently reached the same conclusion. 
Note that a theoretically motivated definition of exactly 
what constitutes a unique strategy is required to substantiate 
and test this proposal. Within the context of the CMPL 
model, we can define a strategy as simply a unique string of 
memory retrievals, executed in the service of some 
problem-solving goal, and typically identifiable through 
participant reports. Given this definition, the CMPL model 
makes the strong prediction of power-function speedup and 
reduction in SD within each strategy. Third, there is an 
additional class of skills for which qualitative process 
changes occur with practice and for which the power law 
does nevertheless hold, at least to a good approximation 
when data are aggregated over items and participants. This 
class of tasks appears to exhibit types of process transitions 
other than algorithm-to-retrieval shifts, which are gradual 
and piecewise at the item level and which have been shown 
by mathematical derivation and by simulation to give rise to 
approximate power-function speedup (e.g., Newell and 
Rosenbloom, 1981; Anderson, 1983). For these tasks, the 
power law does not necessarily hold for a single item, but it 
is a good approximation in many cases when data are 
averaged over items. 

Finally, it is worth speculating on how the parametric 
properties of power-function fits might differ systematically 
for the three cases of the framework described earlier. 

Consider the possibility that there is a constant rate param- 
eter associated with speedup in memory retrieval with prac- 
tice for a given participant. The CMPL model then must 
predict that power-function rate estimates are identical for a 
given participant across all single-step as well as multistep 
memory retrieval tasks (i.e., for practice on all strategies, as 
defined earlier). In tentative support of this speculation, the 
fits of the CMPL model to the data from Experiment 1 and 
2 would have suffered only negligibly had the rate param- 
eters been constrained to be the same for the algorithm and 
retrieval strategies. 

In contrast, differing tasks exemplifying Case 3 described 
earlier might show widely varying rate estimates even 
within a given participant. Some tentative support for this 
possibility can be found in the meta-analysis of power- 
function fits reported by Newell and Rosenbloom (1981). 
Ultimately, models of skill acquisition should be able to 
predict not only when a power function should hold in a 
given data set but also what the rough values of those 
parameters should be and how such parameters are con- 
strained across various conditions. The CMPL model rep- 
resents one candidate framework through which progress in 
this direction may be possible. 

Conclusions 

The new model of skill acquisition introduced in this 
article provides a clear, constrained, and empirically sup- 
ported account of the strategy shift from algorithm-based to 
memory-based performance. I hope the reader finds the 
model both simple and compelling (i.e., CMPL and CM- 
PLing), at least in terms of its broad theoretical claims. Of 
course, it may also be wrong. If this is the case, then the 
merit of the work has been to elucidate new and previously 
unpredicted empirical regularities in skill acquisition, to 
suggest boundary conditions for applicability of the power 
law of practice, and to focus attention on the value of 
considering theoretical approaches that preclude parallel 
execution of two or more strategies and that are grounded in 
the idea that repetition of identical items strengthens a 
generalized representation for each item. 
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A p p e n d i x  A 

Problem Sets Used in Experiment 1 

Set 1 Set 2 Set 3 

3 # 1 7  
4 # 1 2  
5 # 1 6  
6 #  19 
7 # 1 5  
8 # 1 3  
3 #  
4 #  
5 #  
6 #  
7 #  
8 #  

m 

m 

= 20 
= 29 
= 34 
= 18 
= 12 
= 27 

3 #  = 32 
4 #  = 21 
5 # =  28 
6 #  = 33 
7 #  = 24 
8 # =  19 
3 # 1 1  = 
4 # 1 6  = 
5 # 1 9  = 
6 #  18 = 
7 # 1 2 =  
8 # 1 7  = 

3 # 1 7  
4 # 1 2  
5 # 1 6  
6 # 1 9  
7 # 1 5  
8 # 1 3  
3 #  
4 #  
5 #  
6 #  
7 #  
8 #  

= 

= 

m 

= 

= 

= 34 
= 1 1  
= 30 
= 25 
= 32 
= 21 

A p p e n d i x  B 

Problems Used in Experiment 2 

True False 

E + 3 = H  
N + 3 = Q  
H + 3 = K  
K + 3 = N  
J + 5 = O  

G + 5 =  L 
P + 5 = U  

M + 5 = R  
L + 7 =  S 
1+7= P 
F + 7 = M  
O + 7 = V  

E + 3 =  I 
N + 3 =  R 
H + 3 =  L 
K + 3 =  O 
J+5  = P 

G + 5 = M  
P + 5 =  V 

M + 5 =  S 
L + 7 =  T 
I + 7 = Q  
F + 7 =  N 
O + 7 = W  

Set 4 

3 # _ _ = 3 2  
4 #  = 21 
5 # _ _ = 2 8  
6 # _ _ = 3 3  
7 # _ _ = 2 4  
8 # =  19 
3 # 1 8 =  
4 # 1 1 =  
5 # 1 7 =  
6 # 1 5  = 
7 # 1 9  = 
8 # 1 4 =  

Set 5 

3 # 1 1  = 
4 # 1 6  = 
5 # 1 9 =  
6 # 1 8 =  
7 # 1 2  = 
8 # 1 7 =  
3 #  = 
4 # 1 1  = 
5 # =  
6 #  = 
7 #  = 
8 #  = 

Set 6 

3 #  = 20 
4 #  = 29 
5 # =  34 
6 # _ = 3 1  
7 # =  18 
8 # =  27 
3 # 1 8 =  
4 # 1 1  = 
5 # 1 7  = 
6 #  15 = 
7 #  19 = 
8 #  14 = 
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