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On the Cognitive Structure of Basic Arithmetic Skills:
Operation, Order, and Symbol Transfer Effects

Timothy C. Rickard, Alice F. Healy, and Lyle E. Bourne, Jr.

In 2 experiments, college Ss practiced extensively on single-digit multiplication and division
problems (e.g., ___ =6x9; 42=___ x 6) and were tested on both practice problems and
several altered versions of those problems, which were constructed by changing the required
operation, operand order, or arithmetic symbol. There was strong positive transfer to test problems
that had exactly the same elements (the numbers and the required operation) as a practice
problem, regardless of whether other factors such as operand order or symbol were changed, but
little if any positive transfer to test problems that did not have the same elements as a practice
problem. An identical elements framework is used to interpret these results and implications for
existing computational models of arithmetic fact retrieval and for the development of arithmetic

skill are discussed.

Fundamental to any mental calculation is the skill of simple
arithmetic; that is, the ability to determine quickly and
accurately the answers to problems such as 4 X 7 = __. In
recent years, there has been increasing interest in the cognitive
processes underlying this skill in both children and adults (e.g.,
Ashcraft, 1987; Campbell, 1987a, 1987b, 1987c, 1991; Camp-
bell & Graham, 1985; Fendrich, Healy, & Bourne, 1993;
Koshmider & Ashcraft, 1991; McCloskey, Caramazza, &
Basili, 1985; McCloskey, Harley, & Sokol, 1991; Miller &
Paraedes, 1990; Miller, Perlmutter, & Keating, 1984; Siegler,
1988; Zbordoff & Logan, 1990). A basic finding of this research
is that, whereas children often use explicit, consciously medi-
ated counting algorithms, especially in early skill acquisition
(e.g., children often solve 3 x 7by adding 7 + 7 + 7), there isa
transition toward retrieval of arithmetic facts directly from
memory as skill improves. By adulthood, performance on most
single-digit operand problems appears to reflect direct re-
trieval of facts from memory.

The detailed memory structure of these facts is currently not
well understood. It is unclear whether representations are
~ fundamentally bound to the perceptual characteristics of
problems, as proposed by Campbell and Clark (1992), or
whether they take a more abstract form, as proposed by
McCloskey et al. (1985). Embedded within these two general
representational schemes are issues concerning the basic
“units” into which factual arithmetic knowledge is organized.
For example, do complementary operand orders within a
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commutative operation (e.g., 3 X 8 and 8 X 3) access the same
or different underlying memory structures? Similarly, do
complementary problems from two operations {(e.g., 6 X 7 and
42 + 6) or related problems within a noncommutative opera-
tion (e.g., 42 + 6 and 42 + 7) access the same or different
memory structures? This issue of what, psychologically speak-
ing, constitutes a unique arithmetic fact is the primary focus of
the current study.

These experiments should also have implications for three
broader issues. First, several researchers are developing com-
putational models of arithmetic fact retrieval (e.g., Anderson,
Spoehr, & Bennett, 1994; Campbell & Oliphant, 1992; Mc-
Closkey & Lindemann, 1992; Rickard, Mozer, & Bourne,
1992). These models incorporate contrasting assumptions
about the basic units into which arithmetic knowledge is
organized, and thus the present experiments should be of value
in testing them. Second, the present experiments, and indeed
the entire mental arithmetic literature, are motivated by the
premise that discoveries about mathematical cognition will
have implications for general theories of skill acquisition and
memory. Knowledge of calculational thought processes should
provide a valuable complement to knowledge of more qualita-
tive, verbal processes, facilitating efforts to construct precise
and general theories of basic cognitive processes. Third, a
thorough understanding of the structure of adult arithmetic
skills should provide a useful guide to future research on both
children’s performance, and the changes in cognitive struc-
tures that occur in transition to adult performance.

Before discussing the present experiments in detail, we
review briefly evidence supporting the idea that skilled arith-
metic performance is based on fact retrieval (for additional
reviews see Ashcraft, 1992; Campbell, 1987a; McCloskey et al.,
1991; Rickard et al., 1992). One phenomenon that is consistent
with fact retrieval processes is interference among similar
items (see Anderson, 1983). This effect has been demonstrated
repeatedly in research on adult mental arithmetic. For ex-
ample, under speeded conditions, typically 70% to 90% of
errors that college students make are table related; that is, they
are answers to problems that share an operand with the
problem being solved (e.g., Campbell & Graham, 1985; Gra-
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ham, 1987; Sokol, McCloskey, Cohen, & Aliminosa, 1991).
Thus, for instance, 21 (the answer to 3 x 7) is a relatively
frequent error to 4 x 7. Similar results have been reported in
priming and verification studies (e.g., Campbell, 1987b, 1991;
Koshmider & Ashcraft, 1991; Winkelman & Schmidt, 1974).
For example, Campbell (1991) presented a double-digit prime
(e.g., 24) for 200 ms, followed by a multiplication problem to
be solved (e.g., 8 X 4). He found that response times (RTs)
were slowest and error rates were highest when the incorrect
prime was table related to the problem, with better perfor-
mance when the prime was fable unrelated and best perfor-
mance when the prime was correct.

The convergent theme in most recent theoretical accounts of
these and related interference effects (see Anderson et al.,
1994; Campbell & Oliphant, 1992; McCloskey & Lindemann,
1992; Rickard et al., 1992) is that (a) skilled performance
reflects retrieval of facts from memory, (b) when a retrieval is
attempted, multiple facts become active to the extent that they
are in some way similar (e.g., share an operand) with the
problem or have been primed, and (c) these active representa-
tions then compete in an interactive-activation-like process
(McClelland & Rumelhart, 1981) until one representation
(usually the correct one) reaches a high enough level of
activation to be selected as the answer.

Additional support for this general account comes from an
investigation by Campbell (1987a) in which college subjects
were pretested on a set of simple multiplication problems, then
trained for several sessions on a subset of these problems, and
then tested again on all problems. With practice, RTs im-
proved considerably. On the posttraining test, subjects per-
formed worse (had significantly slower RTs and a higher error
rate) on unpracticed problems than they had on these same
problems at pretest. Campbell’s finding that practice does not
transfer positively across problems within multiplication consti-
tutes important converging evidence for the theoretical claim
that skilled arithmetic performance reflects retrieval of indi-
vidual facts from memory rather than the execution of more
general procedures. Furthermore, the finding that practice
appears to transfer negatively to unpracticed problems is
consistent with the assumption that representations for mul-
tiple facts compete for activation during the retrieval process
(i.e., the problems on which the subjects practiced compete
more strongly after practice, thus slowing RTs and increasing
error rates for unpracticed problems).

In another practice-transfer study, Fendrich et al. (1993)
trained college students for multiple sessions on simple multi-
plication problems (e.g., 6 x 8) and then tested them on these
same problems, on operand order reverses of these problems
(e.g., 8 X 6), and on new problems that were not seen during
practice. Like Campbell (1987a), they found that RTs de-
creased considerably across practice sessions. Also, they found
that learning transferred positively, although not completely,
to operand order reversed problems, establishing a useful
qualifier to the Campbell (1987a) transfer results.

Overview of the Experiments

The studies by both Campbell (1987a) and Fendrich et al.
(1993) demonstrate the value of a practice-transfer approach
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to exploring the structure of basic arithmetic knowledge. Our
study is an extension of this general approach. In the first
phase of both experiments, subjects were given three sessions
of practice on simple multiplication and division problems.
Across Experiments 1 and 2, four types of problems were
presented at practice; multiplication and division problems

with symbol x (e.g, ___ =4 x 7 and 35 = _ x 5, Experi-
ments 1 and 2), and multiplication and division problems with
symbol + (e.g., _ + 6 =9 and 48 + _ = 6, Experiment 2).!

We a priori define a problem as involving either multiplication
or division according to the arithmetic operation that is
formally required to produce the answer. Whether this classifi-
cation is also appropriate as a description of the cognitive
organization of arithmetic knowledge is one of the empirical
questions that we address.

The primary purpose of practice was to permit evaluation of
transfer of learning to the various altered problems in the test
phase of the experiment. The practice data also allowed us to
explore two secondary issues. First, they provided a test of the
applicability of the power law of practice (Newell & Rosen-
bloom, 1981), which has been demonstrated previously for
mental addition (Crossman, 1959) and multiplication (Char-
ness & Campbell, 1988; Staszewski, 1988), but not yet for
division. Second, they allowed us to determine the relative
difficulty of multiplication and division problems and of
problems expressed with the symbols X and +.

In the second, test phase of the experiments, subjects solved
each of the problems seen at practice, as well as several altered
versions of each of the practice problems. Table 1 lists the test
conditions in Experiment 1 and provides an example of each.
Multiplication and division problems are presented separately
because the results depended critically on this distinction.

The results of the test phase should provide important new
information concerning the basic knowledge units into which
arithmetic facts are organized. Here, the term knowledge unit is
used generically to refer to the combination of representation
and process that governs performance on a given problem, or
group of problems. It is generally believed that a given set of
empirical results can be modeled by multiple theories that
make widely varying assumptions about process and represen-
tation (e.g., Anderson, 1992). As such, the current experiments
are unlikely to yield unique specifications of process or
representation in isolation. Nevertheless, given that relatively
good transfer of learning from practice to test provides
evidence of access to a common knowledge unit and that
relatively poor transfer provides evidence of access to different
knowledge units, the test results from Experiment 1 will
provide evidence bearing on the following basic questions: Do
common or different knowledge units underlie performance
on (a) complementary operand orders within a commutative
operation (e.g., ____ =4 x 7and __ = 7 X 4), (b) related
problems within a noncommutative operation (e.g.,28 = _ x 4

U All problems were formatted with the product to the left (instead
of the more traditional format, in which the product is to the right) to
match the stimulus items of Experiments 1 and 2 (which were designed
at the same time), as closely as possible. The product could only be to
the left in Experiment 2 because the symbol “+” was used in the
context of multiplication.
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and 28 = _ x 7), and (c) complementary multiplication and
division problems (e.g., =7 X 4and 28 = _ x 4)?

These data will in turn be useful in evaluating computational
models of mental arithmetic, in which assumptions about both
process and representation must be made explicit. Consider,
for example, the network-interference model developed re-
cently by Campbell and Oliphant (1992). This model assumes
that problems are represented in specific “physical codes” that
are tied to the perceptual modality through which the prob-
lems are processed. A problem presented in a visual format, as
in our experiments, maps onto a specific visual code for that
problem. For example, the problem ____ = 7 X 8 maps onto
the representation {7, 8; X; 56]. The basic unit of representa-
tion is an ensemble of three subunits; one for the pair of
operands, one for the operation symbol, and one for the
answer. The order and perceptual characteristics of the
features within a subunit are preserved in the representation.
One implication of this model is that there are separate
representations for complementary operand orders. For ex-
ample, the problem ___ = 6 X 8 maps onto the representa-
tion {6, 8; X; 48}, whereas the problem _ = 8 X 6 maps onto
the representation {8, 6; x; 48}. In general terms, the retrieval
process in the network-interference model involves (a) excita-
tion of problem nodes according to their feature overlap with
the presented problem, (b) inhibition among problem nodes
resulting in low activation levels for nodes that do not have
strong feature overlap with the problem, and (c) excitation
from problem nodes to candidate answer nodes in a separate
response production system.

Although the network-interference model is currently devel-
oped for multiplication and addition, Campbell and Oliphant
(1992) suggest that one straightforward way to generalize their
model to division would be to assume that a single representa-
tion supports performance on complementary multiplication
and division problems. Thus, for example, performance on
both ____ =5 x 6 and 30 = _X 6 could potentially be
mediated in their model by a single representation, {5, 6; X;
30}. Because speedup with practice in the model is due
primarily to strengthening of a single unitization parameter
associated with each representation (Campbell, 1992), this
version of the model would predict substantial transfer of
learning to operation change problems (multiplication to
division and vice versa) in Experiment 1. Also, performance on
operation change problems should be better than performance
on either operand order change or operation and operand
order change problems because problems in these later two
conditions cannot access the representation that was strength-
ened during practice as efficiently as can problems in the
operation change condition. Verification of the above predic-
tions in the current experiments would provide strong support
for the form of representation adopted by Campbell and
Oliphant (1992). Failure to verify these predictions (e.g., if
performance in the operand order change condition is better
than performance in the operation change condition) would
indicate that some elaboration of the Campbell and Oliphant
representational scheme will be necessary to extend the model
to division.

The network-interference model also appears to predict
some positive transfer of learning to multiplication operand
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Table 1
Test Conditions for an Example Problem in Experiment 1
Test condition Practice Test
Muitiplication
No change —=4x7 — =4x17
Operand order change =7x4 =4x7
Operation change 28=__x7 ___=4x7
Operation and operand
order change 28=__x4 =4x7
Division
No change 28=__x%x17 28=__%x17
Operand order change 28=__x4 28=__x17
Operation change __ =4x7 28=__x7
Operation and operand
order change ___=7x4 =_x17

order change problems at test. Representations for both
orders of a problem will receive some excitatory activation
when either problem is presented. Also, representations for
both orders are, of course, associated with the same response.
Thus, performance on problems in the operand order change
condition at test should benefit from practice that would
strengthen the representation for the practiced operand order.
What is less clear, and cannot be determined without perform-
ing a simulation, is the degree of transfer predicted by the
model. The data on operand order transfer, then, will provide
a set of empirical results against which the model can eventu-
ally be tested in quantitative detail.

It is worth noting that in the current experiments, subjects
first saw the problems on the computer screen without the
answer (e.g., ____ =4 X 7) and then, after they responded,
the answer they produced (which was the correct answer on
the vast majority of trials) appeared on the screen with the rest
of the problem (e.g., 28 = 4 x 7). This same sequence of
events was repeated for each problem many times across the
practice sessions. Thus, these experiments would appear to
provide an ideal learning context favoring the type of perceptu-
ally specific, unitized problem-answer representations as-
sumed in the network-interference model.

Another recent computational model of mental multiplica-
tion, MATHNET (McCloskey & Lindemann, 1992), also
makes some predictions about test performance in Experiment
1, at least with respect to the operand order change condition
for multiplication. MATHNET is a connectionist model,
incorporating the mean field theory learning algorithm (Hin-
ton, 1989) that appears to learn an order-specific form of
representation in a hidden layer. McCloskey and Lindemann
reported that when the network is trained and then damaged
(by randomly decrementing some of the weight values), there
is little, if any, evidence of a relationship between complemen-
tary operand orders in degree of impairment. In one simula-
tion, to take an extreme example, damage resulted in a 100%
error rate for 7 X 6, and a 0% error rate for 6 X 7. McCloskey
and Lindemann suggested that there may be a slight positive
correlation in error rate for complementary operand orders,
but they presented no quantitative evidence to support this
claim. To a good first-order approximation then, MATHNET
appears to learn separate representations for complementary
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Table 2
A Sample Practice Set (Practice Set 1) Used in Experiment 1

Division

x4
X9
_ X8
%17
X4
_ X8
X9
__x7
__x7
X5
_x2
— X9
X6
_x2
X8
X1
_x1
_x1
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operand orders in multiplication. Given this aspect of the
model, it is reasonable to assume that if the model were first
taught both operand orders of a set of multiplication problems
(roughly to simulate real-world learning of arithmetic facts)
and then trained further on only one order of each problem (to
simulate the current experiments), the effects of practice
would not transfer to the unpracticed operand order.

We note that the examples above are included primarily as
illustrations of the importance of the issues we are investigat-
ing to current theoretical efforts in the area of mental
arithmetic. We do not mean to advertise the experiments as
providing definitive tests of MATHNET, the network-
interference model, or any other proposed model, although we
do believe that the experiments (and practice-transfer ap-
proach in general) can yield results that will prove valuable
both in testing aspects of these models as currently formulated
and in guiding their future development.

Experiment 1
Method

Apparatus and materials. Subjects were tested on Zenith Data
Systems personal computers, programmed with the Micro Experimen-
tal Language (MEL) software (Schneider, 1988). Four practice sets
were constructed to allow counterbalancing across operand order and
operation and to control for possible effects of ascending-descending
operand order and problem difficulty. An example practice set
(Practice Set 1) is shown in Table 2. The practice sets were constructed
in the following manner: Excluding squares problems (e.g., 4 X 4), and
considering for the moment complementary operand orders to be
separate problems, there are 72 problems between 2 X 1 and 9 x 8§,
inclusive. These problems were divided into two subsets of 36
problems (Practice Sets 1 and 2), such that problems differing only in
operand order were in different practice sets (i.e., 3 X 9 and 9 x 3
were in different practice sets). Within each of these two practice sets,
18 problems were formatted as multiplication problems and 18 as
division problems. The multiplication and division problems in each
practice set were roughly equated on problem difficulty. Half of the
problems of both operations (multiplication and division) had ascend-
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ing operand order (e.g., 3 X 6), and half had descending operand
order (e.g., 7 X 4). Practice Sets 3 and 4 were then constructed by
reversing the operation of each of the problems in Practice Sets 1 and 2
(e.g, if ___ =35 X 4 was a problem in Practice Set 1, that problem
became 20 = __ X 4 in Practice Set 3). In summary, four practice sets
were created such that there was exactly one problem from each
number relation in each set (e.g., Practice Sets 1, 2, 3, and 4 contained
— =6x9, ___=9x6,54=__x9, and 54 = _ x 6, respec-
tively). Each of these four sets was then used equally often across the
12 subjects during training. The immediate and delayed tests consisted
of all 144 problems that made up the four practice sets.

Subjects and procedure. Twelve subjects from an introductory
psychology course received credit for participating in the experiment.
Each subject was tested for four sessions. Each session lasted about 40
min. The first three sessions were held on Monday, Wednesday, and
Friday of one week, and the fourth session was held on Friday 4 weeks
later. During practice, each subject was exposed to 40 blocks of
problems, 15 in both the first and second sessions, and 10 in the third
session. Each block contained one instance of each of the 36 problems
in a given subject’s practice set. The order in which problems were
presented was randomly determined for each block of practice and for
each subject. Problems were presented one at a time, centered on the
computer screen. As each problem appeared, the subject typed the
answer using the numeric keypad and then pressed the enter key. As
the subject typed the answer, it appeared on the computer screen,
replacing the underlined spaces. Subjects were told to answer each
problem as quickly and accurately as possible. If the subject entered
the correct answer, a “‘correct answer” notice was displayed below the
problem for 1 s. If the subject entered an incorrect answer, an
“incorrect answer” notice and the correct answer were displayed
below the problem for 1.5 s. In both cases, the screen was then blank
for 15, and then the next problem was displayed. After each block of 36
trials, a message was displayed on the screen telling subjects that they
could rest briefly and requesting subjects to press the enter key to
begin the next block.

An immediate test was given at the end of the third session,
following the last practice block. Eight blocks of 36 problems were
presented in exactly the same manner as the practice problems. Across
the first four blocks, each of the 144 problems that made up the four
practice sets was presented once. Each of these problems was
presented a second time in the final four blocks. Each block contained
9 problems from each of the four practice sets, with each block having
an equal number of multiplication and division problems and an equal
number of problems with ascending and descending operand orders.
Subject to the constraints above, the order of presentation of blocks
and the order of problem presentation within each block was deter-
mined randomly for each subject. The delayed test was structured in
exactly the same way as the immediate test, except that there were
twice as many trials so that each of the 144 problems was presented
four times across 16 blocks of 36 problems.

Results

The 10 problems with single-digit products (e.g.,
——=4x12;9=__ x 1) were analyzed separately from the
26 problems with double-digit products (e.g., =4x7
56 = __ x 8). This separation was motivated by the possibility
that most multiplication problems with single-digit products
may be solved by rule (e.g., if a multiplication problem has 1 as
one of the operands, the answer is the other operand) rather
than by retrieval of facts from memory or any other form of
calculation (e.g., McCloskey, Aliminosa, & Sokol, 1991).2 The
results for problems with single-digit products were somewhat
difficult to interpret: There was only modest speedup with
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practice, and differences among the test conditions were smali,
though reliable in some cases. To the extent that there were
reliable effects for these problems, they were analogous to
those observed for double-digit problems. For these reasons,
the results for problems with single-digit products will not be
discussed further. A discussion of these results can be found in
the thesis by Rickard (1992).

Unless otherwise indicated, all reported results are reliable
at the .05 level. Reported error analyses were performed on
the raw error proportions. Secondary analyses on the arcsine
transformed error proportions yielded an equivalent set of
reliable effects in all instances. Reported RT analyses were
performed on the log transformed initiate RT (the interval
between the onset of the problem on the computer screen and
the pressing of the first digit of the answer) and were limited to
correctly solved problems. Previous arithmetic research (Fen-
drich et al., 1993) showed initiate RT to be highly correlated
with total RT, the interval between the onset of the problem
and the pressing of the enter key.

Practice. The overall error proportion for multiplication
problems was .036 and for division problems, .030. The power
law of practice predicts a linear decrease in log RT as a
function of log trials or blocks of trials (see Newell &
Rosenbloom, 1981). That the practice data essentially conform
to this expectation can be seen in Figure 1, which shows log
RTs for correctly solved problems plotted by log block and
operation (multiplication or division). Each data point repre-
sents up to 156 observations; data were collapsed over subjects
and problems. A within-subjects regression was performed to
confirm the effects of practice (the improvement in log RT as a
function of log block) and operation (the advantage of muitipli-
cation over division) suggested in Figure 1. The overall 72 was
.90. The effect of log block was strong, F(1,11) = 242.6, MS. =
.00753, as was the effect of operation, both at the beginning
(first block) of practice, F(1, 11) = 56.6, MS. = .00449, and at
the end (last block) of practice, F(1, 11) = 39.1, MS. = .01555.
The antilog RT advantage for multiplication was 341 ms at the
beginning of practice and 109 ms at the end of practice. There
was also a reliable interaction between operation and log
block, F(1, 11) = 5.8, MS. = .00279, reflecting a slightly greater
rate of speedup for division than for multiplication.

Test. Comparisons of the immediate and delayed test data
showed very good retention of improvements in performance
levels acquired through practice, a finding that replicates
previous results of Fendrich et al. (1993). Each of the reliable
effects on the immediate test was also present on the delayed
test (although the effect sizes were diminished, likely due to
the practice that was received on all test problems during the
posttest), and all theoretical conclusions that were supported
by the immediate test data were also supported by the delayed
test data. Thus, we focused solely on the immediate test resuits
(which we refer to as fest results). For a discussion of the de-
layed test resuits of Experiments 1 and 2, see Rickard (1992).
In all test analyses, a block of test problems refers to a group of
four actual blocks of problems across which each test problem
was presented once (see the Subjects and procedure section).
Thus, there were two blocks of test problems in this experiment.

Test: Multiplication. As there were no reliable differences
in error patterns in Blocks 1 and 2, the error data were
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3.27
;L A Division
3.17 * Multiplication
-
-4
8
2.7 L T T T
0.0 0.4 0.8 1.2 1.6
Log Block
Figure 1. Log response time (RT) for correctly solved practice

problems in Experiment 1 plotted as a function of log block and
operation (multiplication or division).

collapsed across this variable for analysis. The error propor-
tions for problems in the no-change, operand order change,
operation change, and operation plus operand order change
conditions were .013, .032,.112, and .115, respectively. A2 x 2
within-subjects analysis of variance (ANOVA) with operand
order (same or different) and operation (same or different) as
variables showed a large effect of operation, F(1, 11) = 12.9,
MS. = .01516, but no reliable effect of operand order and no
interaction (Fs < 1.0).

The antilog of the mean log initiate RT for multiplication
problems (averaged across subjects and correctly solved prob-
lems) is plotted by block and test condition (no change,
operand order change, operation change, and operation plus
operand order change) in Figure 2. Also shown in Figure 2 are
the multiplication RTs extrapolated from the power function
fits to the practice data (performed separately for each
subject), included to allow comparison of these RTs with the
actual performance on no-change problems at test.

2 Some problems with single-digit products did not have 1 as an
operand (i.e., 2 X 3 and 2 X 4, and their reversed orders). Thus, these
problems are probably represented in memory as facts just as are the
problems with double-digit products. We decided not to analyze these
problems along with the problems with double-digit products, how-
ever, for two reasons. First, there was relatively little speedup for these
problems with practice. This observation stands in contrast to prob-
lems with double-digit products, for which there was substantial
speedup. We did not want problems such as 2 X 3 and 2 X 4 to mask
the speedup present for problems with larger operands. Second, if we
analyzed problems with double-digit and single-digit products sepa-
rately, then the motor response requirements would be grossly the
same for all problems within each arithmetic operation. For example,
for the group of problems with double-digit products, all multiplication
problems had double-digit answers and all division problems had
single-digit answers.
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—— operation plus operand order change
—®— operation change

~——O~— operand order change

—®— no-change

extrapolated from practice

1100 7

g E

Anti-log RT (ms)
®
S

600 1 H-—mermcmc—————— A
500 T T
1 2

Block

Figure 2.  Antilog response time (RT) for correctly solved multiplica-
tion problems in Experiment 1 as a function of test condition and
block.

Inspection of Figure 2 suggests that performance expected
by extrapolating from practice was better than performance
actually observed in the no-change condition. A 2 x 2
within-subjects ANOVA with condition (no change vs. extrapo-
lated) and block (1 or 2) as variables was performed on the log
RT to investigate the reliability of this effect. Actual perfor-
mance in the no-change condition was indeed reliably worse
than would be expected by extrapolating from practice, F(1,
11) = 20.2, MS. = .00114. There were no effects involving
block or the interaction of block and condition (Fs < 1.0).

A separate 2 X 2 x 2 within-subjects ANOVA with block (1
or 2), operation (same or different), and operand order (same
or different) as variables was performed on the test log RTs.
There were reliable effects of operation, F(1, 11) = 35.7,
MS. = .01585, operand order, F(1, 11) = 5.5, MS, = .00307,
and block, F(1, 11) = 13.7, MS, = .00217. There was a reliable
interaction of operation and block, F(1, 11) = 14.0, MS,. =
.00142, indicating more speedup from Block 1 to Block 2 for
different operation problems than for same operation prob-
lems. There was no reliable interaction between operation and
operand order. A more detailed post hoc investigation of the
operand order effect, however, showed it to be reliable for
same operation problems, F(1, 11) = 6.2, MS. = .00251, but
not for different operation problems, F(1, 11) = 1.3, MS, =
.00256, indicating that the main effect of operand order may be
primarily attributable to the difference between the no-change
and operand order change conditions (this conclusion is
consistent with the error results, which show virtually no
difference between the operation and operation plus operand
order change conditions).

It is important to consider possible effects that improvement
in motoric (production) aspects of the task during practice
might have had on overall performance in the various test
conditions. Because the specific sequence of digits correspond-
ing to the answers to problems in the same operation condi-
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tions (with or without order changes) were entered repeatedly
on the keypad during practice, whereas, in most cases, the
sequence corresponding to answers to problems in the differ-
ent operation conditions were not, some of the RT advantage
for same operation problems might be attributable to faster
execution of the motor response for these problems. To
investigate this possibility, we performed supplementary analy-
ses on problems that allowed us to control for possible
differences in motor RT among the various conditions. Specifi-
cally, three pairs of problems used across the practice sets
shared the same product (2 X 6 and 3 x 4; 2 x 9 and 3 x 6;
3 x 8and 4 x 6). The practice sets were constructed such that
one member from each pair was presented as a multiplication
problem in each practice set, and the other member was
presented as a division problem. Thus, when the member of
each pair that was presented as a division problem at practice
was presented as a multiplication problem (in either operand
order) at test, the subject was already experienced at executing
the motor response for the answer by way of the other member
of the pair that was presented as a multiplication problem at
practice. An analysis restricted to these test problems thus
equates problems in all conditions with respect to the subject’s
experience in entering the digit sequences that correspond to
the answers. Consistent with the overall results, this analyses
showed a reliable main effect of operation, F(1, 11) = 12.5,
MS. = .02635. The overall difference in antilog RT between
the same and different operation conditions (collapsing across
operand order and block) in this analysis was 289 ms, nearly
identical to the comparable value in the overall analysis (282
ms), strongly indicating that specific experience with motor
sequences made little if any contribution to the RT differences
among the conditions at test.

Test: Division. As there were no reliable differences in
error patterns in Blocks 1 and 2, the error data were collapsed
across this variable. The error proportions for problems in the
no-change, operand order change, operation change, and
operation plus operand order change conditions were .022,
.105, .109, and .093, respectively. A 2 x 2 within subjects
ANOVA with operand order and operation as variables
revealed a reliable effect of operation, F(1, 11) = 5.2, MS, =
.01823, and operand order, F(1, 11) = 5.0, MS. = .1485. These
effects were qualified by a reliable interaction of these vari-
ables, F(1,11) = 9.5, MS, = .01349; the error proportion in the
no-change condition was especially low relative to other
conditions. Post hoc pairwise comparisons showed no reliable
differences among the operand order, operation, and opera-
tion plus operand order conditions (all Fs < 1.0).

The antilog of the mean log initiate RTs for correctly soived
division problems are shown in Figure 3, including the pre-
dicted RT for problems in the no-change condition extrapolat-
ing from the power law fits to the division practice data. A 2 x
2 ANOVA, equivalent to that discussed for multiplication,
revealed reliably slower performance in the no-change condi-
tion than would be expected by extrapolating from practice,
F(1, 11) = 20.3 MS. = .00114. There was no significant main
effect of block in this analysis, nor was there a reliable
interaction (Fs < 1.0).

In a 2 x 2 x 2 within-subjects ANOVA (with operation,
operand order, and block as variables) comparing log RT
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among the test conditions, there were reliable main effects of
operation, F(1, 11) = 44.5, MS, = .00466, operand order, F(1,
11) = 26.4, MS, = .00495, and block F(1, 11) = 8.2, MS, =
.00176. There was a two-way interaction between operation
and block, F(1, 11) = 12.8, MS. = .00119, indicating more
speedup across blocks for different than for same operation
conditions. There was also a two-way interaction between
operation and operand order, F(1, 11) = 19.5, MS. = .00436,
reflecting the greater effect of a change in operand order in the
same operation conditions than in the different operation
conditions. Post hoc pairwise comparisons showed no differ-
ences among the operand order, operation, and operation plus
operand order conditions (collapsing across block): F(1, 11) =
4, 2.7, 1.0, MS, = .00628, .00490, .00433, for the operation
versus operation plus operand order, operand order versus
operation plus operand order, and operation versus operand
order comparisons, respectively. These results reflect the
pattern in Figure 3 in which the most salient effect is overall
better performance in the no-change condition relative to all
the other conditions.

A balanced check for possible motoric-related variations in
RT across conditions was not possible for division problems as
it was for multiplication problems. Note, however, that an-
swers to division problems were all single digits, and each
subject entered each digit many times across the entire set of
multiplication and division problems during practice. This fact,
combined with the fact that no motoric-related RT differences
were present for multiplication, strongly indicates that any
minor differences in the familiarity of the motoric responses
played a negligible role in the RT patterns obtained across
division conditions.

Discussion

Practice. There was substantial improvement in RT with
practice for both multiplication and division, and the course of
speedup was well described by a power law. A good power law
fit does not, per se, rule out other possible mathematical
descriptions of learning, such as the often considered exponen-
tial function. Rickard (1992) performed nonlinear regressions
on these practice data and compared an extended version of
the power law function (including parameters allowing for
nonzero asymptotic RT and prior learning) with a similar
version of the exponential function and found evidence favor-
ing the power law. This finding, and those of other researchers
that have demonstrated power function speedup (Crossman,
1959; Charness & Campbell, 1988; Staszewski, 1988), has
direct relevance for models of mental arithmetic performance
and skill acquisition. Most of the modeling efforts to date (e.g.,
Campbell & Oliphant, 1992; McCloskey & Lindemann, 1992;
Rickard et al., 1992) focus on stationary performance and do
not directly address the functional form of skill acquisition
with practice. It is pervasively true in these models, however,
that practice is assumed to strengthen representations or the
connections among relevant representations. Ultimately, these
and any future models will need to incorporate detailed
learning algorithms explicitly stating both the mechanisms that
govern the strengthening of representations and connections
and the impact that this strengthening has on RT. Demonstra-
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Figure 3. Antilog response time (RT) for correctly solved division
problems in Experiment 1 as a function of test condition and block.

tions of power law speedup thus provide important data
against which to test candidate learning algorithms.

There was a reliable operation effect, an RT advantage for
multiplication over division, both at the beginning and at the
end of practice. This effect may exist because in formal
education or in everyday life, multiplication is performed more
frequently than is division, leading to greater skill or faster
access to problem representations. This account is analogous
to the often suggested frequency account of the problem size
effect; the finding that problems with small operands, such as
3 x 4, are generally solved faster and more accurately than
problems with large operands, such as 7 X 9 (sec Ashcraft,
1992, for a review). At the moment, we are concerned
primarily with an alternative possibility, namely, that the
multiplication advantage might simply reflect the fact that the
symbol x was used for both multiplication and division
problems. Because the X symbol directly implies multiplica-
tion, its presence may have facilitated performance on multipli-
cation problems, or interfered with performance on division
problems, or both. This factor requires investigation before
any other hypothesis can be seriously considered. Such an
investigation was one purpose of Experiment 2, in which
symbol (X and +) was treated orthogonally to the actual
operation (multiplication and division) required by a problem.

Test. Multiplication and division RTs in the no-change
condition were reliably slower than expected by extrapolating
from practice. Note that this finding could not reflect forget-
ting because the test was given immediately after the last block
of practice. One account of this finding, consistent with
Battig’s (1979) contextual interference hypothesis, is that
exposure to the various altered problems at test resulted in the
activation of problem representations that were not active
during practice. These newly active representations may then
have competed in the retrieval process, slowing retrieval times
for practiced problems (Campbell, 1987a). An alternative



1146

account suggested by Campbell is that subjects may strategi-
cally allow more processing time for problems at test to bring
overall error rates more in line with the low error rates during
practice. It is not possible to differentiate strongly between
these two accounts on the basis of data from Experiment 1.

The relative performance among the test conditions can be
summarized straightforwardly: When the presented numbers
(disregarding operand order) and the formally required arith-
metic operation of a test problem were exactly the same as
those of a problem solved during practice (as in the no-change
conditions for both operations and the operand order change
condition for multiplication), performance was relatively good.
When the presented numbers and the required operation of a
test problem did not completely match those of a practice
problem (as in the operation and operation plus operand order
change conditions for both operations and the operand order
change condition for division), performance suffered substan-
tially; error rates were three to five times higher, and RTs were
more than 300 ms slower.

The foregoing summary suggests a working model of skilled
arithmetic knowledge that we refer to as an identical elements
model, according to which there is a single and functionally
distinct unit of arithmetic knowledge corresponding to each
unique combination of the two numbers (ignoring order) that
constitute a problem (e.g., 4 and 7), the number that is the
answer (e.g., 28), and the arithmetic operation formally re-
quired to produce the answer (e.g., multiply).? Note that “the
operation formally required” refers to the operation required
in the mathematical sense, rather than to the arithmetic
symbol present in the problem. For example, the answer to
28 = __ X 4 requires division. The model assumes distinct
perceptual, cognitive, and motor stages of arithmetic fact
retrieval (see also McCloskey et al., 1985) and it applies to the
structure of knowledge as represented within the cognitive
stage. Numbers are treated as abstract elements superordinate
to the perceptual characteristics of the modality or physical
format in which problems are presented. Problems that have
exactly the same elements will access the same knowledge unit
within the cognitive stage, despite any perceptual differences,
such as format or modality of presentation. For example, a
problem presented in numerical format, such as 4 X 7, and the
same problem presented in a written verbal format, such as
“four times seven,” will access the same knowledge unit.
Similarly, multiplication problems that differ only in operand
order, such as 3 X 8 and 8 x 3, will access the same knowledge
unit. Indeed, any problems that differ only with respect to
detailed characteristics of the format (e.g., horizontal vs.
vertical presentation, variations in the symbol used to denote
an operation) will access the same knowledge unit. In contrast,
problems that differ with respect to even one element will
access completely different knowledge units. So, for example,
complementary problems from two operations (e.g.,4 X 7 = __
and 4 x __ = 28), and related problems within a noncommuta-
tive operation (e.g., 28 = .. x4 and 28 = __ X 7), access
completely different knowledge units.

Because practice will strengthen only the knowledge units
corresponding to the practiced problem, the identical ele-
ments model makes straightforward predictions about positive
transfer of learning to the various test conditions. If the
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elements of the test problem match exactly with the elements
of a problem seen during practice, there will be substantial
positive transfer of learning to the test problem, despite any
other problem differences. Note, though, that the model does
not necessarily predict total transfer of learning in this case
because some perceptual processing advantage could accrue
for the practiced problem. Thus, for example, the model is not
necessarily inconsistent with the slight but reliable increase in
RT that was observed in the operand order change condition
relative to the no-change condition for multiplication, here
and in the previous study by Fendrich et al. (1993): It could be
the case that a perceptual advantage accrued for the practiced
operand order, but that the same knowledge units were
accessed for corresponding problems in the two conditions. In
contrast, if the elements of the test problem do not exactly
match the elements of at least one practice problem, and if
there are no general transfer effects from practice to test (e.g.,
no improvements with practice in general perceptual or motor
processes), then the identical elements model makes a predic-
tion of absolutely no positive transfer. Even if there is some
general transfer, the identical elements model predicts substan-
tially poorer performance when the elements of the test
problem do not exactly match those of a practice problem.
Consistent with the prediction, performance in the operation
change and operation plus operand order change conditions
for both operations, and in the operand order change condi-
tion for division, was much poorer than performance in the
other conditions.

If the knowledge units specified by the identical elements
model are interpreted as being completely independent of one
another, then the model also predicts no negative transfer of
learning under any circumstances. The negative transfer re-
sults of Campbell (1987a), however, show this prediction to be
incorrect. An alternative interpretation of the model, which we
adopt, is that access to the knowledge unit corresponding

3 The reader may question whether one or more of these elements is
redundant. The model, however, would make substantially different
and often untenable predictions if any one of the elements that we
have defined were excluded. For example, if the answer were excluded
as an element, the model would predict that the same knowledge unit
would be accessed by 28 + 4 = __ and 4 + 28 = __. Note also that the
model can be restated equivalently in terms of the two numbers
presented in the problem, the formal operation to be performed, and,
if the operation is noncommutative, the order of the presented
numbers.

4 Although our use of the term identical elements is similar to and
strongly motivated by its previous uses by Thorndike (1906) and
Singley and Anderson (1989), there are also some differences. Thorn-
dike’s elements were the stimulus items themselves. Taken literally,
this position predicts no transfer any time there is any change
whatsoever in the makeup of the stimulus items (such as a change in
operand order). Our elements are abstract representations of numbers
and arithmetic operations. Singley and Anderson also proposed a
general abstract identical elements model of skill acquisition and
transfer, framed within the ACT* architecture (Anderson, 1983).
However, arithmetic facts could potentially be modeled using the
ACT?* architecture in many different ways that would yield different
predictions about transfer. In contrast, our identical elements model,
although much narrower in scope, makes specific predictions regard-
ing mental arithmetic.
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exactly to a given problem is the only direct retrieval route to
correct performance on that problem. Speedup and reduction
in error rate with practice on a given problem reflect more
efficient processing within the corresponding knowledge unit.
We leave open the possibility, however, that knowledge units
not corresponding to a given problem can potentially produce
contextual interference (Battig, 1979) through some unidenti-
fied mechanism external to the model. Thus, for example,
practice on one set of problems can negatively influence
performance on another set of problems corresponding to
different knowledge units, as in the Campbell (1987a) study. In
summary, the identical elements model predicts substantial,
although not necessarily total, positive transfer whenever the
elements of the test problem match exactly with those of a
practice problem. The model predicts no transfer or negative
transfer whenever (a) the elements of the test problem do not
match exactly with those of a practice problem and (b) general
positive transfer effects (e.g., general perceptual or motor
speedup with practice) are either negligible or can be fac-
tored out.

Experiment 2

In this experiment, we examine practice—transfer effects
manipulating operation (multiplication and division, as in
Experiment 1) and a new variable, symbol (see Table 3), in a
design that allows us to explore two issues raised by Experi-
ment 1, First, in Experiment 1 there was an operation effect in
the practice data, a performance advantage for multiplication
over division. As we discussed earlier, it is possible that use of
the multiplication symbol x for all problems in Experiment 1 is
responsible for this effect. Performance may be sensitive to the
degree of consistency between the mathematical operation
required and the conventional symbol used. The orthogonal
manipulation of operation and symbol in this experiment
allows us to examine the possibility of a consistency effect.

Second, the test conditions allow for additional tests of the
identical elements model. Performance was evaluated on each
of the practice problems, as well as on several altered versions
of each practice problem, reflecting a change in symbol, a
change in operation, or a change in both symbol and operation
(see Table 3). On the basis of the model, we expect a
substantial overall performance advantage for all problems in
the same operation conditions (i.e., the no-change and symbol
change conditions), for which the elements match exactly with
those of a problem seen during practice, relative to problems
in the different operation conditions (i.e., the operation and
operation plus symbol change conditions), for which the
elements do not match exactly with those of a problem seen at
practice.

Note that it is not clear a priori whether, as predicted by the
model, subjects will treat problems that differ only in terms of
the arithmetic symbol as the same problem. For example,
subjects may interpret ____ = 4 x 7 as “what is four times
seven?” whereas they may interpret ___ + 4 = 7 as “what
divided by four is seven?” Similarly, subjects may interpret
28 = __ x 7 as “twenty-eight equals what times seven?”
whereas they may interpret 28 + __ = 7” as “twenty-eight
divided by what equals seven?” It is quite possible that the
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Table 3
Examples of Each of the Four Problem Types Seen at Practice
and the Corresponding Test Conditions in Experiment 2

Test condition

Operation

and

Symbol Operation symbol

Practice ~ No change change change change
L =4XxT ___=4x7 __+4=7 8=_xT7 8B+_=1
o +9=5__ +9=5___=9x5 45+ __=5 45=__X6
48=__%X6 48=_x%x6 48+ __=6___=8x6 ___+8=6
18+ __=3 18+ _=3 18=_x3 _+6=3 __XxX6=3

Note. From top to bottom, the four types of problems at practice rep-
resented above are multiplication with symbol ““ x”, multiplication with
symbol “+”, division with symbol * x , and division with symbol *“=+".

knowledge structures that are accessed and presumably
strengthened with practice are strongly dependent on these
potential differences in how the problems are interpreted. The
identical elements model, however, predicts that the same
knowledge structure is accessed regardless of symbol, and thus
it predicts substantial transfer of learning to symbol change
problems at test.

Method

Subjects. Twelve subjects from an introductory psychology course
received credit for participating in the experiment.

Materials and procedure. The materials and procedures were the
same as those in Experiment 1, with the following exceptions: Half of
the multiplication and division problems were expressed with the
symbol X and half with the symbol +. Thus, a practice set in this
experiment can be derived from Table 2 by switching the symbol to +
for half of the multiplication and half of the division problems. This
manipulation yielded four problem types at practice; multiplication
problems with symbol x, multiplication problems with symbol +,
division problems with symbol X, and division problems with symbol
+. On the immediate and delayed tests, each problem was presented
again exactly as it was at practice (the no-change condition), with a
change in symbol, with a change in operation, and with a change in
both operation and symbol. Only one operand order was presented for
each problem across both the practice and test phases of the
experiment.

Results and Discussion

Practice. Error proportions for the four problem types
were as follows: For multiplication problems with symbol X,
.053, for multiplication problems with symbol +, .053, for
division problems with symbol x, .030, and for division
problems with symbol +, .052.

In Figure 4, the log initiate RT (averaged across subjects and
correctly solved problems) is plotted as a function of log block
and problem format, with regression fits shown separately for
each of the four problem formats. We analyzed these data
using log block as a continuous within-subjects variable, and
operation and symbol as categorical within-subjects variable.
The overall 12 was .85. There was a large main effect of log
block, F(1, 11) = 161.1, MS. = .01963, reflecting an overall
improvement in log RT with practice, and a reliable interac-
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Figure 4. Log response time (RT) for all correctly solved practice
problems in Experiment 2 plotted as a function of log block and
problem format. Multiplication (X) = multiplication problems with
symbol x; multiplication (=) = multiplication problems with symbol
+; division (x) = division problems with symbol x; division (+) =
division problems with symbol +.

tion of log block and symbol, F(1, 11) = 28.8, MS, = .01623.
Both of these effects were qualified by a three-way interaction
among log block, symbol, and operation, F(1, 11) = 19.7,
MS. = .01193. As shown in Figure 4, three of the four problem
types exhibit essentially the same slope over blocks, whereas
the slope of the fourth problem type (multiplication with
symbol +) was much steeper. There is no obvious explanation
for this difference other than the relative unfamiliarity of the
multiplication with symbol + format (e.g., ____ + 6 =7) for
presenting arithmetic problems. We suspect that early during
practice, there was some delay for multiplication problems
with symbol + because of a need to interpret, or decode, the
problem deliberately to determine, in terms of the identical
elements model, the knowledge unit to be accessed. This inter-
pretive stage may have been less prominent or completely ab-
sent for the other formats because of their relative familiarity.

Two effects not involving block were significant at the
beginning (first block) of practice. There was a main effect of
symbol, F(1, 11) = 31.5, MS. = .0326, and also an interaction
between operation and symbol, F(1, 11) = 12.3, MS, = .03259.
Both of these effects reflect the exceptionally poor perfor-
mance at the beginning of practice on multiplication problems
with symbol . There was no reliable effect of operation, F(1,
11) < 1.0. The resuits from the end (last block) of practice
looked different. There was a reliable effect of operation, F(1,
11) = 8.8, MS. = .03809, reflecting faster performance on
multiplication problems, although the effect of symbol, F(1,
11) = 1.9, MS. = .05445, and the interaction of operation and
symbol, F(1, 11) < 1.0, were no longer significant.

As we noted earlier, one purpose of this experiment was to
determine whether the operation effect observed in Experi-
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ment 1 reflected a fundamental performance advantage for
multiplication, or, rather, simply the fact that the symbol for
multiplication, %, was used for both multiplication and divi-
sion problems. The findings from Experiment 2 support the
hypothesis that the operation effect reflects a fundamental
advantage for multiplication. Despite the poor performance
for multiplication problems with symbol <+ at the beginning
of practice, by the end of practice there was a reliable overall
RT advantage for multiplication problems over division prob-
lems, and average RTs were roughly equivalent for problems
that differed only in the symbol.

Test. Problem format (each of the four combinations of
operation and symbol are defined here as a separate format)
did not enter into any reliable interactions with the other test
variables, and thus we collapsed across this variable for all
reported test analyses. The error proportions, collapsed across
block, were .042, .042, .100, and .090 for the no-change, symbol
change, operation change, and operation plus symbol change
condition, respectively. As with Experiment 1, there was a
large increase in the error proportion with a change in
operation. A 2 x 2 within-subjects ANOVA with symbol and
operation as variables showed a reliable effect of operation,
F(1, 11) = 21.8, MS, = .00726, but neither symbol, F(1, 11) =
1.2, MS. = .00436, nor the interaction of operation and symbol,
F(1,11) < 1.0, was statistically significant.

The antilog of the mean log initiate RT (averaged across
problems and subjects) is plotted in Figure 5 by block (1 or 2)
and test condition (no-change, symbol change, operation
change, and symbol plus operation change). The expected RTs
in the no-change condition extrapolating from a power func-
tion fit to the overall practice data are also shown. An ANOVA
comparing no-change to extrapolated values (see the Results
section in Experiment 1 for details) revealed reliably slower
RT in the no-change condition than would be expected by
extrapolating from practice, F(1, 11) = 8.2, MS. = .00067.
There were also reliable effects of block, F(1, 11) = 7.9, MS, =
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Figure 5. Antilog response time (RT) for correctly solved problems in
Experiment 2 as a function of test condition and block.



ARITHMETIC SKILLS

.00023, and the interaction of block and condition, F(1, 11) =
5.4, MS. = .00021, reflecting more speedup from Block 1 to 2
for the no-change condition than would be expected by
extrapolating from practice. Inspection of Figure 5, however,
shows this interaction to be of relatively small magnitude. The
primary result here is the slower performance in the no-change
condition than would be expected by extrapolating from
practice, which replicates the results of Experiment 1.

A2 x 2 x 2 ANOVA with within-subjects variables of block
(1 or 2), operation (same or different), and symbol (same or
different) was performed on the log initiate RT for correctly
solved test problems. Consistent with the predictions of the
identical elements model, there was a strong effect of opera-
tion, F(11, 1) = 132.9, MS, = .00433. There was a main effect
of block, F(1, 11) = 56.3, MS, = .00069, and also an interaction
of operation and block, F(1, 11) = 45.1, MS. = .00028,
indicating more speedup from Blocks 1 to 2 for different-
operation than for same-operation problems. There was also a
main effect of symbol, F(11, 1) = 26.8, MS, = .00083, reflecting
better performance in the same symbol conditions than in the
different symbol conditions. There was no reliable interaction
between operation and symbol. Further examination of the
symbol effect, however, showed a reliable difference between
the no-change and symbol change conditions F(1, 11) = 13.4,
MS,. = .00204, but no reliable differences between the opera-
tion change and operation plus symbol change conditions, F(1,
11) = 4.6, MS. = .00044.

In summary, as predicted by the identical elements model,
the primary determinant of performance was whether or not
the elements of a test problem were the same as the elements
of a practice problems; that is, performance was relatively
good in the same operation (no-change and symbol change)
conditions and relatively poor in the different operation (opera-
tion change and operation plus symbol change) conditions.

General Discussion

The most straightforward account of the operation effect
observed in the practice data of Experiments 1 and 2 is that
subjects came into the experiments having been exposed more
frequently to multiplication problems than to division prob-
lems. There are two theoretically distinct ways in which a
frequency advantage could give rise to better multiplication
performance. First, more frequent exposure might simply
speed retrieval of multiplication facts. Because multiplication
and division problems were presented with equal frequency
during practice in these experiments, the advantage for multi-
plication might decrease (but not completely disappear) by the
end of practice. Alternatively, division facts might be too
weakly represented to support direct retrieval, leading subjects
to use a backup strategy (see Siegler, 1988) for solving these
problems. One such strategy is mediation of division by way of
better developed multiplication knowledge. For example, for
the problem 42 = _ X 6, subjects might adopt a strategy of
plugging in candidate answers, performing the multiplication,
and then checking the result with the provided answer. If such
strategies do account for the operation effect at the beginning
of the experiments, then there are two obvious possibilities for
the effects of practice on division. First, practice might
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strengthen the division facts sufficiently for direct retrieval to
take over at some point. Second, the mediational processes
might simply become more efficient or automatized with
practice.

We cannot differentiate strongly between these possibilities
with data from the current experiments, but there at least two
lines of evidence suggesting direct retrieval for division, at least
toward the end of practice. First, as discussed earlier, there is
evidence in the arithmetic literature that skilled multiplication
typically involves direct retrieval from a network of facts, even
when algorithms can be demonstrated during initial learning
(Siegler, 1988). It is therefore reasonable to assume that
division performance reflects fact retrieval as well, given
sufficient practice. Second, mean RTs (as predicted by the
power function fits) for multiplication and division problems
on the last of block of practice in Experiment 1 were 580 ms
and 689 ms, respectively. These RTs are too fast to allow much
in the way of mediational processes, and the difference
between the multiplication and division RTs is certainly too
small to support an hypothesis of direct retrieval for multiplica-
tion and frequent mediation for division.

All of the major differences among the test conditions of
both experiments are predicted by the identical elements
model. The model predicts substantial positive transfer of
learning when the elements of a test problem match exactly the
elements of a problem seen during practice. This prediction
was confirmed by the clear evidence of positive transfer to
problems in the no-change conditions across both experi-
ments, in the operand order change condition for multiplica-
tion of Experiment 1, and in the symbol change condition of
Experiment 2. In contrast, the model predicts no positive
transfer of learning when the elements of the test problem do
not match exactly with those of a practice problem. Consistent
with this prediction, performance levels were substantially
lower in Experiment 1 for the operation and operation plus
operand order change conditions with both multiplication and
division, and the operand order change condition with divi-
sion, and in Experiment 2 for the operation and operation plus
symbol change conditions.

Two other, less prominent differences among the test
conditions are at least potentially consistent with, even if not
directly predicted by, the model. First, there were reliable
performance advantages in terms of RTs (but not error
proportions) in the no-change conditions of both experiments
relative to the operand order change condition (Experiment 1)
and the symbol change condition (Experiment 2). Both of
these findings are consistent with the model, assuming that
they reflect greater fluency of perceptual processing for the
no-change conditions. An experimental approach to testing
this assumption is discussed later. Second, there were trends in
the test data suggesting slightly better performance in the
operation change condition relative to the operation plus
operand order change condition for both multiplication and
division in Experiment 1, and also slightly better performance
in the operation change condition relative to the operation
plus symbol change condition in Experiment 2. These rela-
tively small effects can potentially also be accounted for by
assuming a perceptual advantage for problems in the opera-
tion change conditions, analogous to the perceptual advantage
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suggested previously for no-change problems. Recall that the
answer appeared on the screen as the subject typed it,
replacing the answer blank. For example, after a subject typed
the answer to ___ = 4 x 7, the problem-answer combination
briefly appeared as 28 = 4 x 7. This perceptual exposure to the
entire problem-answer configuration could have resulted in
slightly faster performance at test on operation change prob-
lems, like 28 = _ x 7, which are partial reinstatements of the
same configuration, than on operation plus operand order
change problems, such as 28 = __ x 4, or operation plus
symbol change problems, such as 28 + __ = 7. The fact that
there were no reliable effects of operand order or symbol in the
analysis of error proportions is consistent with the perceptual
account of the effects of these variables in the RT analyses:
RTs presumably reflect both perceptual and cognitive (i.e.,
fact retrieval) related processing, but errors may be largely, if
not completely, driven by fact retrieval processes.

A stronger test of the identical elements’ prediction of no
positive transfer when the elements of the test problem fail to
match those of a practice problem would require pretesting
subjects on a group of problems, practicing subjects on a subset
of these problems, and then administering a posttest on all
problems. If general speedup factors are negligible or can be
factored out, and if none of the problems on which subjects
practice have elements exactly identical to those on which they
did not practice, then the identical elements model predicts no
positive transfer to unpracticed problems at posttest. That is,
performance on unpracticed problems should be no better at
posttest than at pretest. The results of the Campbell (1987a)
study, reviewed earlier, are consistent with this prediction.

The issue addressed in Campbell’s (1987a) study was whether
there would be positive transfer to unpracticed problems
within a given operation (multiplication). An analogous ques-
tion in Experiments 1 and 2 is whether there is any positive
transfer to complementary problems in a new operation.
Although we did not have a pretest in either experiment, the
problems seen during practice and test were completely
counterbalanced. Thus, it is reasonable to compare perfor-
mance at the beginning of practice with performance at test on
what we will term new problems (i.e., problems in the opera-
tion plus operand order change condition in Experiment 1 and
in the operation plus symbol change condition in Experiment
2). The identical elements model predicts no positive transfer
to these problems if there is no general transfer (i.e., transfer
not related to specific problems on which subjects practiced)
from practice to test. In Experiment 1, the overall error
proportions and antilog mean RTs were .051 and 1,278 ms on
the first block of practice and .103 and 1,094 ms for new
problems on the first block of test. In Experiment 2, the
corresponding values were .080 and 1,883 ms on the first block
of practice and .096 and 1,208 ms on the first block of test.

These results provide mixed support for the model. Negative
transfer on the error proportions (—.052 and —.016 in Experi-
ments 1 and 2, respectively) is consistent with the model, but
the finding of positive transfer on the RTs (184 ms and 675 ms
in Experiments 1 and 2, respectively) appears, on the surface
at least, to be inconsistent with the model. There are, however,
at least two ways to interpret results that are consistent with
model. First, the negative transfer indicated by the error
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proportions and the positive transfer indicated by the RTs
might reflect a shift in the subjects’ speed-accuracy criterion
from the beginning of practice to test. Subjects might have
been more accuracy oriented at the beginning of practice and
more speed oriented at test. This interpretation leaves open
the possibility of no net transfer of learning to new problems at
test.

An alternative interpretation is that the negative transfer on
error proportions reflects interference because of learning that
took place during practice, but that the positive transfer on
RTs reflects more general learning that is not directly related
to fact retrieval within the cognitive stage. Consistent with the
interpretation that the negative error transfer reflects interfer-
ence, Rickard (1992) reported detailed error analyses on the
Experiment 1 test data and found that more than 70% of
errors for multiplication problems in the operation and opera-
tion plus operand order change conditions at test were correct
answers to table-related problems seen during practice. Analo-
gous results were also obtained for division. These percentages
were reliably larger than would be expected by chance.

There are many potential sources of positive RT transfer in
these experiments that would involve general processes not
directly tied to fact retrieval, including general speedup in
perceptual processing and motor response.’ In addition, there
is evidence of substantially improved efficiency at test, relative
to the beginning of practice, in processing the various formats
in which the problems were presented. First, note that the
amount of positive transfer from the beginning of practice to
new problems at test in Experiment 2 (675 ms) was much
larger than that in Experiment 1 (184 ms). This effect primarily
reflects a large performance disadvantage (605 ms) for Experi-
ment 2 relative to Experiment 1 at the beginning of practice.
This disadvantage was reduced to 114 ms at test. These results
suggest a “format level” contextual interference (Battig, 1979)
account of much of the positive RT transfer in Experiment 2.
Assuming that the number of different formats encountered
constitutes a form of context in these experiments, then the
concurrent presence of four unique problem formats in Experi-
ment 2 might have slowed processing of all problems relative to
the less contextually varied case of Experiment 1. By test,
however, all subjects were familiar with all formats, and any
performance disadvantage attributable to the more varied
formats in Experiment 2 would likely be substantially reduced.
Note additionally that a similar increase in the efficiency of
format level processing during practice can potentially account
for the positive RT transfer observed in Experiment 1.

5 The motor response speedup was estimated by fitting a power
function to the latency between the pressing of the first digit of the
answer and the pressing of the second digit of the answer for
multiplication problems in Experiment 1. A speedup of 47 ms from the
first to the last block of practice was indicated by this analysis. The r2
was .89. This measure should provide a relatively pure measure of
motor response speedup (i.e., assuming that the entire answer is
retrieved before executing the motor response, this measure is unlikely
to reflect either encoding or fact retrieval related processes). Note also
that the estimate of 47 ms is, if anything, an underestimate; much of
the motor response for the second digit of the answer could be
preprogramed before entering the first digit (see Card, Moran, &
Newell, 1983).
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Second, the mean RT for multiplication probiems with
symbol + in Experiment 2 on the first block of practice was
more than 800 ms slower than mean RT for any other problem
format in either experiment. On new problems at test, how-
ever, the mean RT for this condition was 1,293 ms, only 114 ms
slower than the overall mean RTs of the other three conditions
in Experiment 2. Clearly, then, much of the speedup that
occurred for these problems during practice reflects a general
improved ability to interpret the cognitive processing required
by these problems (e.g., the operation to be performed).

In summary, then, the identical elements model provides at
least a good first order approximation to the organization of
knowledge for the basic arithmetic facts. Because the identical
elements model makes straightforward and testable predic-
tions, we believe that it provides a useful starting point for
future investigations into the detailed structure of arithmetic
knowledge. To make this point more concrete, we outline
briefly two predictions of the model that will be tested in future
experiments. As discussed above, the model predicts no
positive transfer with a change in operation from practice to
test, given that general transfer effects can be factored out. A
strong test of this prediction would involve replicating the
essential features of Experiment 1, but with an additional new
problems condition at test for both multiplication and division.
These new problems would not be seen during practice in
either operation. Because the various general transfer factors
discussed above would be equated for new and operation plus
operand order change conditions at test, the identical ele-
ments model predicts that performance in these conditions will
not differ. Another prediction of the identical elements model
is that perceptual familiarity alone is responsible for the
advantage of no-change problems over (a) operand order
change problems for multiplication in Experiment 1 and (b)
symbol change problems in Experiment 2. One test of this
prediction for operand order transfer would involve practicing
subjects on several problems each in only one operand order,
with some problems presented in numerical format (e.g.,
4 x 7), and some problems presented in written verbal format
(e.g., five times eight), and then testing them on each practice
problem presented in both formats and in both operand
orders, and on new problems not seen during practice. The
identical elements model makes two predictions. First, within
a given problem format at test, there should be a substantial
performance advantage for all old (practice) problems over
new problems, even when the format, operand order, or both is
changed from practice to test. Second, any performance
advantage for no-change over operand order change problems
should disappear when these problems are presented in a
novel format. This prediction follows from the model because
processing of same and reversed operand order problems
presented in the novel format should not benefit differentially
from perceptual familiarity acquired during practice.

Implications for the Network-Interference
and MATHNET Models

Our empirical results bear on the viability of several assump-
tions embodied in both the network-interference (Campbell &
Oliphant, 1992) and the MATHNET (McCloskey & Linde-
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mann, 1992) models of mental arithmetic. Before beginning
this discussion, we note that the symbol manipulation of
Experiment 2 addresses issues that appear to be outside the
scope of phenomena toward which either of these models have
been directed to date (although it is certainly possible that the
models could be extended to cover these issues). Thus, we
focus on issues related to the operand order and operation
manipulations of Experiment 1.

Campbell and Oliphant (1992) conjectured that their model
could easily be extended to division by assuming a single
representation for corresponding multiplication and division
problems. This approach, however, would not fare well in
accounting for our results. As discussed earlier, such a model
would predict substantial positive transfer of learning to the
operation change conditions for both multiplication and divi-
sion and better performance in the operation change condition
than in the operand order change condition for multiplication.
Clearly, though, performance in the operand order change
condition for multiplication was much better than perfor-
mance in the operation change condition. An alternative
approach to extending the network-interference model to divi-
sion would appear to be necessary to account for these results.

It is also unclear at present whether the network-interfer-
ence model will be able to predict the strong (although not
total) positive transfer of learning to operand order change
problems for multiplication. In principle, the model should be
able to account for this finding because representations for
both orders of a problem can become active whenever either
order is encountered, and thus the representation for the
practiced order can potentially facilitate processing of a
problem presented in the unpracticed order. Nevertheless,
given the complexity of the model, simulations will be needed
to demonstrate conclusively that it can indeed generate the
operand order transfer effect.

As discussed in the introduction, the MATHNET model of
McCloskey and Lindemann (1992) does not appear to predict
the substantial transfer to operand order change problems for
multiplication that was observed by Fendrich et al. (1993) and
that was replicated in Experiment 1. McCloskey and Linde-
mann encountered a similar conflict between the predictions
of their model and data that has been collected from patients
with brain injuries. Whereas error rates for complementary
operand orders were essentially uncorrelated in their simula-
tions, these correlations among patients with brain injuries
were typically positive and quite strong (McCloskey et al,,
1991; Sokol et al., 1991). As one potential account for this
discrepancy, McCloskey and Lindemann (1992) suggested that
their patients may have mentally transformed (reversed) the
operand order if they were unable to retrieve the answer with
the given operand order. Such a strategy would yield the
observed correlations because performance on both orders
would be driven by the more intact, or accessible, representa-
tion. It is conceivable that a similar transformation process
might account for the increase in RT with a change in operand
order for multiplication in Experiment 1 and in the Fendrich et
al. (1993) studies. The practiced operand order may become
strong enough that, at test, the most efficient strategy for
solving the reversed order problems is to transform the
problem into the practiced order before retrieving the answer.
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This account seems unlikely, however, because the RT advan-
tage for the no-change condition over the operand order
change condition for multiplication was only about 65 ms. The
required transformation process, which would necessitate
conscious mediation, is unlikely to take place in so little time.
Thus, the MATHNET model, as currently formulated, does
not appear to provide a viable account of the representation of
operand order information in adults. It is more likely that
either separate representations can both participate in retriev-
ing the answer when either order is presented, as in the
network-interference model, or that a single underlying repre-
sentation mediates performance on both orders, as in the
identical elements model.

Implications for the Development of Arithmetic Skills

It is of interest to contrast our findings with studies exploring
the initial acquisition of arithmetic skills. For example, Siegler
(1986) found evidence suggesting that children represent
complementary operand orders independently. Similarly, Re-
der and Ritter (1992) trained college students on more
complex multiplication problems (e.g., “17 x 24”) and found
evidence suggesting learning for their subjects was order
specific. Thus, the structure of factual arithmetic knowledge
appears to change, at least with respect to order information,
as skill improves. Through some yet-to-be-identified generali-
zation process, the cognitive distinction between complemen-
tary operand orders largely disappears by adulthood. Along
similar lines, the current studies show little if any transfer of
learning across operation for college subjects. It is a commonly
held belief, however, that children rely on muitiplication
knowledge to learn division. If this belief is true, then in an
important sense there is positive transfer of learning across
operation, at least from multiplication to division, for less
skilled subjects. In discussing potential accounts of the opera-
tion effect during practice in these experiments, we suggested
that, during carly practice, performance on some division
problems may have been mediated by multiplication knowl-
edge, with a transition to direct retrieval of division facts as
skill improves. The practice interval in these studies may
represent the tail end of the skill acquisition interval within
which such mediation takes place. If these speculations are
correct, then strong positive transfer from multiplication to
division (but not necessarily the reverse) should be obtained
for young children in a similar study, with decreasing degrees
of transfer for older children for whom the initial level of
division skill would be greater.
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