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Among adults, arithmetic training–transfer studies have docu-
mented a high degree of learning specificity. Provided that there is
a delay of at least 1 day between training and testing, performance
gains do not transfer to untrained problems, nor do they transfer to
complement operation-inverted problems (e.g., gains for 4 + 7 = __
do not transfer to the complement subtraction problem,
11� 4 = __, or vice versa). Here we demonstrate the same degree of
learning specificity among 6- to 11-year-old children. These results
appear to rule out, for the current training paradigm, operation-level
procedural learning as well as any variant of complement problem
mediation that would predict transfer. Results are consistent with
either or both of two types of learning: (a) item-level procedural
learning and (b) a shift to memory-based performance as predicted
by the elemental elements model. These results suggest a develop-
mental pattern such that specificity of learning among children is
similar to that among adults. Educational implications are noted.

� 2013 Elsevier Inc. All rights reserved.
Introduction

Answer production practice, or drill, clearly improves adults’ and children’s arithmetic performance
(e.g., Burns, 2005; Fendrich, Healy, & Bourne, 1993). Among adults, that improvement is largely specific
to trained problems. Surprisingly, however, the specificity of children’s arithmetic fluency training has
not been explored in the literature. For example, there appears to be no experimental work among chil-
dren that addresses the extent to which extended training on a subset of multiplication problems (e.g.,
4 � 7) transfers to complementary division problems (e.g., 28 � 4) or vice versa, nor has the analogous
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work been done for addition and subtraction (but see Baroody, 2010, for exploration of conceptual spec-
ificity for addition and subtraction among young children). Given the substantial student time invest-
ment in skill training, it is important to document this transfer (or specificity) of learning phenomena.

Summary of adult findings

Among adults, arithmetic learning in delayed training–transfer studies (i.e., studies in which at
least 1 day intervenes between training and the transfer test) is highly specific to trained problems.
Bajic, Kwak, and Rickard (2011) showed that training gains for a subset of addition and subtraction
problems do not transfer to untrained problems, nor is there cross-operation transfer to complement
problems; that is, training gains for 4 + 7 = __ do not transfer to the complement subtraction problem,
11 � 4 = __, or vice versa. The analogous specificity pattern holds for multiplication and division
(Rickard & Bourne, 1996).

In immediate transfer paradigms, however, there is often evidence of partial cross-operation transfer
among adults (cf. Campbell, Fuchs-Lacelle, & Phenix, 2006). Campbell and Agnew (2009) observed addi-
tion–subtraction transfer on a test that immediately followed repetition training. Cross-operation trans-
fer for multiplication–division has also been demonstrated in immediate (or very brief delay) priming
experiments (Campbell, 1999; LeFevre & Morris, 1999). Thus, adult arithmetic can be characterized as
exhibiting nearly complete specificity of learning on delayed transfer tests and partial transfer of learn-
ing on immediate tests. Bajic et al. (2011) proposed that partial transfer on immediate transfer tests may
reflect the influence of episodic memories of trained problems that are relatively quickly forgotten. On
delayed transfer tests, performance may be driven by better retained but also more specific learning that
does not support cross-operation transfer. From educational and developmental points of view, these
better retained representations are arguably of greater interest and they are the focus of this study.

Overview of the experimental design

To investigate delayed transfer effects among children, 6- to 11-year-old students were trained for
six sessions on either a set of mixed addition and subtraction problems or a set of mixed multiplica-
tion and division problems, depending on their pre-experimental skill level. On identical pre- and
posttests performed in separate sessions, performance was evaluated on each of three problem sets:
(a) trained problems, (b) operation-inverted complements of trained problems (e.g., trained on 4 � 7 and
tested on 28 � 4 or vice versa), and (c) untrained problems (i.e., problems not trained in either oper-
ation, e.g., 3 � 8). Two main empirical questions were addressed. First, do performance improvements
on trained problems transfer to untrained problems from the same operation? Second, compared with
untrained problems, is there greater transfer of learning to operand-inverted problems?

Candidate arithmetic learning mechanisms and transfer predictions

The literature on adults’ and children’s arithmetic suggests several mechanisms that may be in-
volved in performance and learning, with varying predictions for transfer. These mechanisms are
grouped into four categories in Table 1. The first two categories involve procedural learning. In both
of those categories, learning can, in principle, occur either as a shift from a less efficient procedure
to a more efficient procedure or as improved efficiency in procedural step execution (e.g., faster count-
ing for addition). Multiple types of procedural shifts have been identified (e.g., Robinson et al., 2006;
Siegler & Jenkins, 1989). For addition, children may use finger counting initially, then progress to
counting on from one of the addends, and then progress to the more efficient strategy of counting
on from the larger addend (the min rule; Groen & Parkman, 1972). For multiplication, the repeated
addition strategy exhibits a developmental shift toward adding the larger operand to itself the number
of times indicated by the smaller one (Lemaire & Siegler, 1995).

Operation-level procedural learning refers to procedural learning that will transfer from trained
problems to other problems from the same operation, but not to problems from any of the other oper-
ations. Intuitively at least, most procedural learning would be expected to be operation-level learning.
Consider procedural shifts. Once a student shifted to the min rule for a given addition problem, one



Table 1
Candidate learning mechanisms and corresponding transfer predictions for the current experiment.

Learning mechanism Transfer to operation
inversion?

Transfer to
untrained?

Operation-level proceduresa,b Yes Yes
Item-level proceduresa No No
Complement problem mediationc Yes No

Subtraction by addition
Division by multiplication
Division by factoring

Shift to, or improved execution of, identical elements retrieval No No

a Procedural learning in the form of either procedural shifts or improved execution.
b Although operation-level procedures as defined in this article support transfer only from one subset of problems to another

subset from the same operation, transfer to the inverted operation is nevertheless predicted in the current experiment because
training occurs on two operations and problems on the transfer test are drawn exclusively from the same two operations.

c These predictions apply only to the variant of the complement problem mediation hypothesis that is described in the text.
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might expect rapid generalization of that rule to other addition problems. Similarly, a shift to repeat-
edly adding the larger operand rather than the smaller operand in multiplication would be expected to
generalize to untrained multiplication problems. Improved efficiency of step execution for a given pro-
cedure might also be expected to generalize from trained problems to untrained problems from the
same operation (e.g., faster repeated addition for 6 � 7 would be expected to transfer to 4 � 7).

Given the design of the current experiment, in which each student was trained on a subset of both
addition and subtraction (or multiplication and division) problems, the operation-level procedural
learning account predicts transfer of learning to both the untrained problems and operation-inverted
conditions (because both of those conditions exclusively contain problems from the two operations on
which the students were trained).

Item-level procedural learning, which as defined here would not transfer beyond a particular arith-
metic problem, may also occur. For example, generalization of the addition min rule from one problem
to another can be delayed (Shrager & Siegler, 1998), indicating that students sometimes discover the
min rule independently for a number of problems before they generalize it as an operation-level pro-
cedure. Hence, temporarily at least, discovery of the min rule may take the form of item-level learning.
It is also possible that some aspects of procedural learning in the form of improved efficiency, such as
improved repeated addition for a particular multiplication problem, do not generalize to other prob-
lems. Item-level procedural learning predicts, by definition, no transfer in the current experiment to
either operation-inverted or untrained problems.

A third category is referred to here as complement problem mediation, which involves solving a
problem by accessing knowledge of its inverse operation complement. Complement problem access
may, in principle, occur through use of either procedures or memory retrieval. Three types of comple-
ment problem mediation have been hypothesized: subtraction by addition (Campbell, 2008; Peters,
De Smedt, Torbeyns, Ghesquire, & Verschaffel, 2010), division by multiplication (Campbell, 1999;
Mauro, LeFevre, & Morris, 2003), and division by factoring (Campbell & Robert, 2008; Rickard,
2005; Rusconi, Galfano, Rebonato, & Umiltà, 2006). All types are founded on the assumptions that
(a) knowledge about addition (or multiplication) typically exceeds that about the inverse operation
(subtraction or division), and (b) under at least some circumstances, subtraction and division perfor-
mance for a given problem can be facilitated (relative to use of other strategies) by accessing knowl-
edge about the inverse complement. Evidence consistent with complement problem mediation comes
from the immediate transfer and priming experiments discussed earlier, verbal reports that imply
mediation (Barrouillet, Mignon, & Thevenot, 2008; Robinson, 2001; Robinson et al., 2006), and prob-
lem format effects among adults (Campbell, 2008; Campbell & Alberts, 2010; Mauro et al., 2003).

The concept of complement problem mediation has not yet been defined sufficiently to allow for
unqualified transfer of learning predictions in the current experiment. As often treated in the
literature, however, positive cross-operation transfer is implied (e.g., Campbell, 2008). The assumption
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in that variant of the mediation hypothesis is that a common problem representation is accessed and
strengthened when performing either complement problem. For example, training on the addition
problem 4 + 7 = __ is assumed to strengthen a flexibly accessible addition representation, 4 + 7 = 11.
That strengthening is assumed to facilitate processing through that representation for any presented
problem that can access it, such as a complement problem in the inverted operation. Thus, when the
problem 11 � 4 = __ is presented on the transfer test, complement problem mediation via 4 + 7 = 11 is
facilitated by the prior addition training, yielding cross-operation transfer from addition to subtrac-
tion. Similarly, on each trial on which complement problem mediation is used for subtraction during
training, the underlying common addition representation (e.g., 4 + 7 = 11) is strengthened, supporting
cross-operation transfer to 4 + 7 = __. The transfer prediction for complement problem mediation in
Table 1 refers to this particular variant and is not intended as a global prediction applicable to other
possible variants.

The fact that cross-operation transfer has not been observed in delayed transfer experiments
among adults suggests that complement problem mediation either (a) does not occur for adults in
training paradigms or (b) occurs but for some reason does not yield cross-operation transfer (i.e.,
the variant of the mediation concept described above is not correct). The current study provides in-
sight into whether the same conclusions hold for children.

Finally, Rickard, Healy, and Bourne (1994) and Rickard and Bourne (1996) proposed what they
termed identical elements (IE) representations that preclude memory-based retrieval through comple-
ment problem representations. Their model proposes that practice yields a separate and independent
memory representation for each unique combination of practiced stimulus elements. Each stimulus
representation, in turn, has an association with the required response (e.g., 4, 7, �? 28; 28, 7,
�? 4). Critically, an IE representation can be accessed only by items that have an exactly matching
set of stimulus elements, including the logical arithmetic operation required but ignoring superficial
perceptual factors such as stimulus modality, the operation symbol, and (for commutative operations)
the spatial or temporal ordering of the elements (Rickard & Bourne, 1996). Hence, shifts to or strength-
ening of IE memory would produce no transfer to either operation-inverted or untrained problems.
Specificity of learning across lifespan development

In addition to their implications for cognitive process accounts, the results of the current transfer
experiment should yield insight into general principles of learning specificity across development. The
specificity of learning among children may plausibly be related to that among adults in one of three
ways. First, substantial transfer to inverted problems, and perhaps also to untrained problems, may
be observed. For example, children may undergo operation-level strategy shifts or make frequent
use of complement problem mediation that supports transfer, whereas new learning among adults
may be more item based (e.g., may primarily reflect IE-based memory retrieval), leading to greater
specificity. Second, learning specificity may be a developmental constant, such that children’s speci-
ficity patterns closely match those of adults, raising the possibility that, during independent training,
the strategies used and the corresponding learning are analogous for the two populations. A third pos-
sibility, for completeness, is that children may have an even higher level of learning specificity than do
adults. Children are likely to have encountered arithmetic and other skills in less varied contexts than
have adults. As a result, children’s mental representations may be more tied to specifics such as prob-
lem format and arithmetic operation than are those for adults. Given that adults exhibit no transfer in
the delayed transfer paradigm explored here, the current results are not expected to differentiate be-
tween this possibility and the developmental constant account.
Method

Setting and participants

The experiment was conducted as part of an after-school Math Club program held twice a week for
six consecutive weeks at a community center in southeastern San Diego County on the U.S. West
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Coast. All students provided voluntary written assent to participate, and all parents provided volun-
tary written consent. The Math Club recruits students from all schools within a school district where
54% of students are enrolled in the free or reduced lunch program and where 59% of students are cat-
egorized at the basic or above level of mathematics. The ethnicity distribution of that school district is
44.7% Hispanic or Latino, 32.5% White not Hispanic, 10.6% African American, 2.3% Asian, 5.8% two or
more races, 2.8% Filipino, and 0.4% American Indian or Alaska Native.

A sample of 38 students aged 6 to 11 years attended at least one training session and the posttest.
Two students who had posttest accuracy of less than 50% were excluded. Exclusion of those students
did not alter the statistical results. Of the remaining 36 students, 22 had signed up for Math Club early
enough to also attend the pre-assessment and pretest sessions. Most students who did not attend the
pretest were in the 6- to 8-year-old range. That pattern reflects the fact that Math Club was advertised
for the younger ages at a later time than for the older ages, a factor that was not under our control.

Design and materials

There were nine experimental sessions: one on Thursday of the first week of Math Club and one
session each on Wednesday and Thursday of the next 4 weeks. Each session lasted approximately
30 min. The pre-assessment took place during Session 1, the pretest during Session 2, training during
Sessions 3 to 8, and the posttest during Session 9.

Stimuli for each student were generated from one of four master stimulus sets, each of which was
composed of 24 arithmetic number triplets. As shown in the Appendix, the four master sets were clas-
sified as ‘‘easy’’ addition–subtraction, ‘‘difficult’’ addition–subtraction, ‘‘easy’’ multiplication–division,
and ‘‘difficult’’ multiplication–division. Each master set was divided into three subsets (A, B, and C),
such that the eight number triplets in each subset were roughly balanced on sum or product size.

During training, each student was presented repeatedly with 16 arithmetic problems taken from
two of the three subsets of the student’s assigned master set (i.e., Subsets A and B, Subsets B and C,
or Subsets C and A, counterbalanced over students). For each student, the eight triplets from one of
the subsets were presented throughout training as addition (or multiplication) problems and the eight
triplets from the other subset were presented in the inverse operation (subtraction or division), with
counterbalancing over participants. Half of the problems from each subset were randomly selected for
presentation with ascending operand order throughout training, and half were presented with
descending order (e.g., the addition problem 2 + 4 = __ has ascending operand order).

The pretest and posttest materials consisted of 48 problems taken from the student’s master set
(one for each operation from each of the 24 triplets; see Appendix). As was the case during training,
half of the problems were presented in ascending operand order and half in descending order (for the
16 trained problems, the presented operand order matched that during training). This design yielded
‘‘pre’’ and ‘‘post’’ data for each of three transfer conditions: (a) the 16 trained problems, (b) the 16 oper-
ation inversions of the trained problems, and (c) the 16 untrained problems taken from the subset of
eight number triplets that were not presented during training.

All phases of the experiment were performed using paper and pencil. Each student received a bin-
der containing a set of worksheets on which problems were presented in horizontal fill-in-the-blank
format (e.g., 4 � 7 = __, 28 � 4 = __). On each worksheet, 16 problems (eight from each complement
operation) were printed in two columns of eight. Problem ordering on each sheet was randomly deter-
mined. Problems were printed only on the front side of each sheet.

Procedure

In Session 1 (pre-assessment), students worked through as many problems as they could in each of
four 2-min performance blocks: one block each for problems created from the easy addition–subtrac-
tion, difficult addition–subtraction, easy multiplication–division, and difficult multiplication–division
master sets. In each block, the 48 problems (24 from each operation) from the master set were ran-
domly distributed over four pages of 16 problems, with the constraint that there were 8 problems
from each operation on each page. This pre-assessment allowed us to identify and assign to each stu-
dent the most difficult master set that the student could perform while exhibiting high accuracy
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(>70%) and no systematic errors that would reflect a lack of conceptual understanding (e.g., perform-
ing addition on multiplication problems or consistently making the same errors on a subset of prob-
lems within the master set). Students who enrolled in Math Club after the pre-assessment session
were assigned to a master set that, based on grade-level curriculum expectations, they should be able
to perform accurately with no systematic error (i.e., 6- and 7-year-olds: easy addition–subtraction; 8-
year-olds: difficult addition–subtraction; 9-year-olds: easy multiplication–division; 10- and 11-year-
olds: difficult multiplication–division).

From the pretest session onward, students worked problems in 3-min blocks with 2-min breaks
between blocks. Research assistants ensured that students worked continuously throughout each
block. During the pretest and posttest sessions, there were three blocks, each corresponding to a dif-
ferent transfer condition: one block in which only the 16 trained problems were presented, one block
in which only the 16 operation-inverted problems were presented, and one block in which only the 16
untrained problems were presented. Block order was counterbalanced over students. During training,
there were six sessions and six blocks per session. On all training blocks, participants exclusively
worked the 16 problems from their training set.

On each block, students were instructed to complete as many worksheets as possible until told to
stop. Each worksheet contained one instance of each of the 16 problems to be presented during the
block, randomly ordered anew on each worksheet. More worksheets were included for each block
than students were able to complete. That feature of the experiment served two purposes. First, it al-
lowed the number of problems completed during each 3-min block to be used as a measure of perfor-
mance speed. Second, because all students worked continuously throughout each training period,
students who worked more slowly were not exposed to direct performance evaluation from students
who worked more quickly.

To begin each block, the experimenter instructed students to turn their binder to a separation page
that indicated the beginning of a block of problems. The experimenter held up a stopwatch, asked for
silence, and then instructed the students to begin, at which point students flipped to their first work-
sheet page and began working. At the end of 3 min, the experimenter instructed the students to stop.
A team of assistants made sure that all of the students put their pencils down at that point. Likewise,
by the end of each break period, the assistants made certain that all students had found the separation
page that marked the start of the next block.
Data analysis

The dependent variables for each training and test block were number correct (total number of
problems correctly solved during the allotted time for each block) and accuracy (proportion of prob-
lems attempted during each block that were correctly solved). Number correct is likely to be the more
sensitive of these dependent measures. Statistical analyses were also performed on accuracy, however,
to provide insight into whether the transfer findings manifest in both the rate of problem solving (i.e.,
number correct) and accuracy.

Posttest analyses on the full set of 36 students involved factors of age (between participants), trans-
fer condition (within participants), and their interaction. Pre–Post analyses involving the factors of test
(pre vs. post) and transfer condition were also performed on the subset of 22 students who had also
attended the pretest session. Prior results with samples of 24 adults (e.g., Bajic et al., 2011; Rickard &
Bourne, 1996) suggest that, with N = 36 for the posttest in the current study, statistical power to detect
the within-participants effects (the main effect of transfer condition and the age by transfer condition
interaction) will be high. This extrapolation from adults to children, however, presumes similar
within-participants variance patterns for the two populations and, thus, can provide only a rough
guide.

We expected the power to detect any between-groups effect of age to be relatively low. However,
the study was not intended to address whether there is a main effect of age or of the different problem
sets and arithmetic operations on which children of various ages were trained. Rather, the design goals
were to determine (a) whether the main effect of transfer condition that has been observed for adults
also holds for children and (b) whether the answer to the former question must be qualified by age.
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Our use of different problem sets and arithmetic operations across ages was motivated by the de-
sign goal of evaluating whether specificity of learning holds across ages for the case in which children
of each age are able to perform the problems with high accuracy but, prior to experimental training,
are unlikely to have achieved optimal procedural strategy execution or to have shifted to memory-
based performance for most problems. It would not be possible to evaluate this issue over ages
without allowing the problems sets and operations on which the children were trained to vary.

Results

Among the 36 students who attended at least one training session and the posttest, there were 1, 9,
9, 8, 5, and 4 students of ages 6, 7, 8, 9, 10, and 11 years, respectively. Because preliminary analysis
indicated no difference in relative condition performance between 10- and 11-year-old students,
those nine students were combined into one 10–11-year-old category for all subsequent analyses.
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Fig. 1. Posttest results for number correct (A) and accuracy (B) plotted by age and transfer condition. Error bars for the trained
problems represent the standard errors based on the within-participants error term of the ANOVA comparing the trained
problems condition with the mean of the untrained and operation-inverted problems conditions. Error bars for the inverted and
untrained problems represent standard errors based on the within-participants error term of the ANOVA comparing the
untrained problems condition with the operation-inverted problems condition.
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The single 6-year-old student was also combined with the 7-year-old group. This grouping yielded 10,
9, 8, and 9 students in the 7-, 8-, 9-, and 10–11-year-old groups, respectively. Of this sample, seven
students were assigned to Master Set 1, 16 to Master Set 2, 2 to Master Set 3, and 11 to Master Set 4.

Of the 36 students, 22 also attended the pretest session. Among that subgroup, 0, 2, 5, 8, 4 and 3
students were ages 6, 7, 8, 9, 10, and 11 years, respectively. Of these students, 12 were assigned to
Master Set 2, 1 to Master Set 3, and nine to Master Set 4.
Training

The 36 students attended an average of 4.8 of the six training sessions (range = 1–6). The mean
numbers of problems correctly solved were 29.2, 29.6, 36.6, 40.1, 47.6, and 43.8 in Sessions 1, 2, 3,
4, 5, and 6, respectively. Mean accuracy levels, averaged over the six blocks within each session, were
.89, .93, .94, .94, .93, and .94 from the first session to the sixth session. These high accuracies verify that
our efforts to assign each student a master set that the student could perform well under independent
training circumstances was successful. Similar learning curves were exhibited for each grade level. A
one-way within-participants analysis of variance (ANOVA) confirmed a strong effect of session on
number correct, F(5,133) = 17.2, p < .0001, gp

2 = .39.
Posttest

Number correct
Posttest results for the full set of 36 students are shown in Fig. 1A as a function of age and transfer

condition. Two planned orthogonal factorial ANOVAs, with factors of age (7, 8, 9, or 10–11 years; be-
tween participants) and transfer condition (within participants), were performed on number correct.1

Each ANOVA implements a single degree of freedom contrast involving the transfer factor, efficiently
testing the critical predictions of the candidate learning mechanisms described in Table 1. Those con-
trasts have been shown to capture the great majority of the condition variance in prior studies of delayed
transfer among adults (Bajic et al., 2011; Rickard & Bourne, 1996).

In the first ANOVA, the number correct in the trained condition was contrasted against the number
correct averaged over the inverted and untrained problems conditions. There was no significant effect
of age, F(3,32) = 1.95, p = .14, gp

2 = .15. There was a highly significant effect of transfer condition,
F(1,32) = 29.36, p < .0001, gp

2 = .48, but no interaction between age and transfer condition,
F(3,39) < 1.0. These results confirm the dominant pattern in Fig. 1A; training effects were much great-
er for trained problems than for inverted and untrained problems.

In the second ANOVA, the number correct in the operation-inverted problems condition was
contrasted with the number correct in the untrained problems condition, with the trained problems
condition excluded. There was again no significant effect of age, F(3,32) = 2.17, p = .11, gp

2 = .17. There
was also no significant effect of either transfer condition, F(1,32) < 1.0, or the interaction,
F(3,32) = 1.24, p = .31, gp

2 = .10. Hence, there is no indication that training effects transfer more
strongly to operation-inverted problems than to untrained problems.

Although the small standard error bars in Fig. 1 provide a direct visual indication that the sample
means in the operation-inverted and untrained problems conditions are likely to be very similar to
those of the population, supplementary post hoc power analysis was performed on the null effect
of transfer condition in this ANOVA using G⁄Power 3.1.3 (Erdfelder, Faul, & Buchner, 1996).2 The power
to detect a small effect size of at least f = .10 (Cohen, 1988) was .87 and the power to detect a medium
effect (f = .25) was greater than .99. These high power results may seem surprising. They can be under-
stood, however, in the context of the strong correlation (pooled over age groups) between the number
1 Analyses were conducted using SAS PROC GLM and Type III sums of squares. Type I and Type III sums of squares yielded nearly
identical outcomes, confirming that the slightly unbalanced design with respect to the age factor had negligible impact on the
results.

2 The selected G⁄Power options for these analysis were as follows: F test, repeated measures ANOVA (within), a = .05, N = 36,
number of age groups = 4, number of repeated measures = 2, correlation = .933.
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correct in the inverted problems condition and the number correct in the untrained problems condition
(r = .933).

Accuracy
Accuracy results are shown in Fig. 1B. ANOVAs identical to those described above were performed,

with the same pattern of results. In the ANOVA comparing trained problems with the mean of the
other two transfer conditions, there was a highly significant effect of transfer condition,
F(1,32) = 13.04, p < .001, gp

2 = .29, but no significant effect of either age or the transfer condition by
age interaction, Fs(3,32) < 1.0. In the ANOVA comparing the operation-inverted and untrained prob-
lems conditions, there were again no significant effect of age, transfer condition, or their interaction.

Pre–Post results

Although the posttest results described above are optimal (in that they include all 36 students of
the sample) for testing whether there were relative differences in transfer of learning among the con-
ditions, those results do not address the second major question outlined in the Introduction—whether
there was any absolute transfer of learning to untrained (or operation-inverted) problems. That ques-
tion can be addressed by evaluating whether there was any pre–post performance improvement for
untrained or operation-inverted problems among the subset of 22 students who attended the pretest
session.

If there is pre–post improvement for untrained and/or operation-inverted problems, that finding
could reflect (a) transfer of learning from the experimentally trained problems and/or (b) learning
from school or homework over the 4-week training period. If there is no observed pre–post improve-
ment, we can infer that (a) training in the current experiment transferred minimally, if at all, to in-
verted or untrained problems and (b) there was minimal or no fluency learning in school for
problems from the assigned master sets.

Preliminary analyses indicated no statistically significant differences in the pre–post results as a
function of age or operation pair (addition–subtraction vs. multiplication–division), as was expected
based on the posttest results described above. Thus, analyses described below were collapsed over
those factors.

Number correct
Number correct is plotted in Fig. 2A. Three orthogonal single degree of freedom contrasts were con-

ducted. The first contrast, which tested for a pre–post learning effect limited to the untrained prob-
lems, was not significant, F(1,21) = 2.00, p = .17, gp

2 = .09, as was the second contrast, which tested
for the possibility of greater pre–post learning in the operation-inverted problems condition than in
the untrained problems condition (i.e., the interaction between pre- and posttest and transfer condi-
tion, excluding trained problems), F(1,21) > 1.0. The third contrast, which tested whether there was
more pre–post learning in the trained problems condition than in the other two conditions combined
(i.e., the interaction involving trained problems vs. the mean of operation-inverted and untrained
problems) was highly significant, F(1,21) = 30.04, p < .0001, gp

2 = .59. All of these results are in accord
with the posttest results, and they also demonstrate little or no absolute transfer of learning to the
operation-inverted and untrained problems conditions.

Accuracy
Accuracy is plotted in Fig. 2B. All contrasts map to those described above. The first contrast did not

approach significance, F(1,21) < 1.0, indicating no accuracy gain for untrained problems, nor did the
second contrast, F(1,21) < 1.0, indicating no difference in accuracy gain between the operation-in-
verted and untrained problems conditions. The third contrast just reached significance,
F(1,21) = 4.44, p < .047, gp

2 = .17, suggesting more pre–post accuracy improvement in the trained con-
dition than in the mean of the operation-inverted and untrained problems conditions. These accuracy
results, as well as those of the posttest analyses, eliminate a speed–accuracy trade-off account of the
number correct results.
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Fig. 2. Pre–Post results for number correct (A) and accuracy (B) plotted by transfer condition. Error bars are standard errors
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inverted, or untrained).
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Discussion

Across all ages and for both pairs of arithmetic operations, the current delayed transfer results
agree fully with those for adults; the substantial learning that was observed for trained problems
did not transfer to either operation-inverted or untrained problems. Those results appear to exclude
operation-level procedure learning as the primary driver of learning among children, at least in the
current paradigm. That finding is surprising in light of the aforementioned literature documenting
procedural strategy shifts among children. One possible account is that training on a relatively small
problem set accelerates the shift to IE-based retrieval and item-level procedural gains relative to oper-
ation-level procedural gains. The results also raise the possibility that operation-level procedural
shifts are more a consequence of direct instruction (of which there was none in the current experi-
ment) than of independent strategy discovery.

The variant of complement problem mediation described in the Introduction, which predicts cross-
operation transfer, is also inconsistent with our results. Rather, the results suggest that mediation
either (a) was not used frequently by children in the current experiment or (b) was used and may have
contributed to learning but did not yield cross-operation transfer. A model that presumes the latter
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case would need to posit some mechanism by which the substantial learning that occurred during
training was not accessible to support mediation. One possibility is that the learning for addition
and multiplication during training was too specific (e.g., tied to format of presentation) to be accessi-
ble during subtraction or division mediation on the transfer test. Such an account, however, would
need to accommodate evidence that, among adults at least, the majority of improvement with training
is not specific to presentation format (Rickard & Bourne, 1996, Experiment 2). In any case, an impor-
tant goal for future work is development of a mediation model that can integrate findings from trans-
fer, verbal report, and problem format experiments. That goal would be facilitated by development of
a computational model of the mechanism of complement problem access and of the influence of pre-
sentation format, learning history, and other potentially relevant factors.

Other learning accounts that are consistent with the current results include item-level procedural
learning and a shift to (or strengthening of) IE-based memory retrieval. For multiplication–division,
performance rate analyses of the posttest data favor IE-based learning over item-level procedural
learning for at least a subset of participants. Those rates were estimated for each student by dividing
the duration of each posttest block (180 s) by the number of attempted problems. For multiplication–
division, the median performance rate over students in the training condition was 2.1 s per problem,
which is well within the range of memory-based processing for children (e.g., Lemaire & Siegler, 1995).
In contrast, for untrained problems, the median performance rate was 5.6 s, which suggests the use of
procedures or of a mixture of procedural and retrieval trials for those problems. Thus, it is reasonable
to infer that, for at least half of the students in the multiplication–division group (i.e., those perform-
ing at better than the median rate noted above), IE-based learning was a major component of the
training gains.

For addition–subtraction, the median performance rate for trained problems was 5.8 s and the
median performance rate for untrained problems was 10.0 s. These results do not discriminate cleanly
between IE-based learning and item-level procedure learning. However, the five students who per-
formed best on trained problems had a median performance rate of 3.2 s, whereas their median per-
formance rate on untrained problems was 9.0 s. Those results suggest that at least a portion of
addition–subtraction learning for some students is likely to have taken the form of IE-based retrieval
gains.

Specificity of arithmetic learning across development

For the case of independent (i.e., non-tutored) training explored here, the results do not support the
hypothesis that children’s arithmetic learning is more flexible (less specific) than that for adults.
Rather, the specificity of learning observed in this study is nearly identical to that observed among
adults, suggesting that high specificity is a developmental constant, at least in the current training
context and for learning that is retained over at least 1 day. A similar high degree of learning specific-
ity among children was observed by Walker, Mickes, Bajic, Nailon, and Rickard (2013). They compared
transfer of learning following multiple sessions of drill versus arithmetic fact triangle practice and
found that, whereas fact triangle practice promoted better fact triangle performance, that learning
did not transfer at all to subsequent arithmetic answer production. It remains to be determined
whether that high degree of specificity holds for children in other domains.

Applied implications

From an educational perspective, the current results raise the possibility that the intuitive peda-
gogical approach of encouraging students to use operation-inverted complement problems to facili-
tate performance on a newly introduced operation (e.g., encouraging students to think about the
multiplication problem to help solve the complement division problem) should be used with caution.
Our results suggest that students may fail in that endeavor, delaying the execution of the procedures
that eventually generate the answer and, perhaps as a consequence of repeatedly failing to accomplish
something that the instructor believes they should be able to do, negatively affecting their arithmetic
self-efficacy. The results also raise the possibility that a strategy of emphasizing addition and
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multiplication training at the expense of subtraction and division would leave children unprepared to
advance to the next stage of mathematics. Rather, the observed specificity implies that, given an edu-
cational goal of equivalent fluency for all four operations, at least as much training time should be allo-
cated to subtraction and division. Indeed, given the prior empirical support for IE-based memory,
along with the fact that the IE model implies that twice as many facts need to be memorized for sub-
traction and division than for addition and multiplication (Rickard, 2005), substantially more training
time may be needed to master subtraction and division than to master addition and multiplication.
Follow-up research on the specificity of children’s arithmetic learning is needed to further evaluate
these possibilities.

Finally, the current results apply most directly to the case of independent (i.e., non-tutored) train-
ing effects, as may occur in the context of homework, testing, and many classroom activities. Different
transfer results may be observed using other training paradigms, particularly those that focus on
teaching concepts, reasoning strategies, and special rules and shortcuts. Research is needed that com-
pares both learning rate and transfer in non-tutored versus tutored paradigms.
Acknowledgments

We thank C. Renell Nailon and the Spring Valley Community Center for their cooperation and
enthusiasm in conducting this study. We also thank research assistants whose efforts were central
to the execution of this study: Jessica Campos, Travis Carlisle, Micha Fernandez, Monica Guzman,
Vivian Hwe, Emon Lagevardi, Perla Padilla, Julia Trigeiro, and Yen Vu.
Appendix

Master sets and subsets of number triplets from which stimulus sets were constructed.
Easy addition–subtraction set
 Difficult addition–subtraction set
Subset A
 Subset B
 Subset C
 Subset A
 Subset B
 Subset C
2 4 6
 2 7 9
 2 5 7
 3 5 8
 4 5 9
 3 7 10

2 9 11
 6 6 12
 3 3 6
 2 9 11
 2 6 8
 3 4 7

4 4 8
 4 9 13
 4 7 11
 4 6 10
 5 6 11
 2 8 10

3 9 12
 2 3 5
 4 8 12
 5 7 12
 3 6 9
 3 8 11

3 5 8
 4 5 9
 3 7 10
 6 7 13
 7 8 15
 5 8 13

2 6 8
 3 6 9
 3 4 7
 8 9 17
 3 9 12
 5 9 14

4 6 10
 5 6 11
 2 8 10
 4 9 13
 6 8 14
 4 7 11

5 7 12
 3 8 11
 5 8 13
 6 7 16
 4 8 12
 6 9 15
Easy multiplication–division set Difficult multiplication–division set
2 4 8
 2 7 14
 2 5 10
 3 5 15
 2 6 12
 3 4 12

2 9 18
 4 4 16
 3 3 9
 2 9 18
 3 6 18
 2 8 16

6 6 36
 4 9 36
 4 7 28
 4 6 24
 4 5 20
 3 7 21

3 9 27
 2 3 6
 4 8 32
 5 7 35
 3 9 27
 3 8 24

5 3 15
 4 5 20
 3 7 21
 6 7 42
 5 6 30
 4 7 28

2 6 12
 3 6 18
 3 4 12
 6 8 48
 4 8 32
 5 8 40

4 6 24
 5 6 30
 2 8 16
 7 9 63
 4 9 36
 5 9 45

5 7 35
 3 8 24
 5 8 40
 8 9 72
 7 8 56
 6 9 54
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