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In the cognitive skill literature, between-session delays have been treated either as having a negligible
effect on performance or as causing forgetting. In contrast, in the procedural skill literature, overnight
between-session delays can result in performance gains. In 5 multi-session data sets, the author
demonstrates that neither of these 2 models holds for the case of cognitive skill learning. Instead, the delay
between sessions appeared to yield both forgetting and enhanced potential for new learning. Two candidate
classes of explanation are considered, and implications for the empirical law of learning are discussed.
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Most naturalistic skill acquisition requires multiple practice
sessions over many days. A complete theory of human skill must
therefore account for the effects of the delays between sessions on
learning and performance. Yet, in the cognitive skill acquisition
literature, these effects are typically ignored, with the implicit
assumption that they have negligible impact on performance. One
important exception is work by Anderson, Fincham, and Douglass
(1999). In a multisession problem-solving task, they showed that
response times (RTs) exhibit the classic decelerating speedup
function within each practice session but exhibit slowing at the
start of each new session, yielding a scalloped speedup pattern
over sessions. The simplest case model of this effect would assume
that the (nonlinear) learning rate is constant over repetitions and
that the forgetting rate is constant over time. Anderson et al. (1999)
provide one possible implementation of that model in their latency
equation (p. 1122). It follows from that equation that the mean RTs
that are predicted by extrapolating from the fit to one session must
fall below the population mean RTs of all subsequent sessions, as
represented in Figure 1. Stated differently, the RTs after a delay
must be above the RTs that would have been expected had all of
the practice occurred within a single session.

There are two opposing traditions about the effects of delays
between sessions in the procedural skill literature, in which com-
monly studied tasks include repetition of a sequence of finger
movements (e.g., Walker, Brakefield, Morgan, Hobson, & Stick-
gold, 2002), movement of a stylus or cursor between specified
points (e.g., Brashers-Krug, Shadmehr, & Bizzi, 1996), and rotary
pursuit (e.g. Bourne & Archer, 1956). On one hand, in the older
literature exploring the phenomena of reminiscence and warm-up
decrements, the general finding is similar to that reached by
Anderson et al. (1999); provided that practice within the first
session is distributed (e.g., a 40-s break between each 10-s trial),

an overnight delay between sessions can result in worsened per-
formance (e.g., Adams, 1952; Digman, 1959). On the other hand,
in the more recent literature on procedural consolidation (for
reviews, see Stickgold, 2005; Walker & Stickgold, 2006), the
delay between practice sessions has been shown to result in per-
formance gains, referred to as consolidation effects, which appear
to depend largely on sleep. At present it is not clear why some
studies in these literatures have shown performance gains over-
night whereas as others have shown decrements.

As treated in those literatures to date, performance decrements
(forgetting) and performance gains (consolidation) following a
delay are best understood as opposing forces. In this article, I
demonstrate that the true effects of overnight delays between
sessions are—for cognitive skills involving memory recall at
least—too complex to be captured by models that assume only
forgetting or only consolidation, or that assume that these forces
operate in opposition along a unitary dimension. Instead, there is
RT slowing on the first few item repetitions of each new practice
session, which I argue is most naturally interpreted as forgetting in
long-term memory, followed by pronounced RT facilitation with
additional practice (to faster performance levels than would be
anticipated on the basis of data from the proceeding session),
which appears to reflect an increased potential for new learning
following a delay.

Data Sets

Data from five multisession cognitive skill tasks were analyzed.
All of these tasks (with the possible exception of the digit entry
task; Data Set 3) can be characterized as requiring one or more
cued-recall events on each trial. For all tasks, practice sessions
were spaced 2 days apart unless otherwise stated. Experiment 1 of
Rickard and Bourne (1996) involved 24 subjects and three ses-
sions, each with 30 practice blocks. Each block involved presen-
tation of 8 multiplication (e.g., 4 � 7 � ?) and 8 division (e.g.,
54 � 9 � ?) problems, randomly ordered. The same problems
were presented across all 90 practice blocks. In this and all other
experiments described below, subjects began each new block of
trials when they were ready to proceed. In nearly all cases, subjects
advanced to the next block with little or no delay. Subjects in this
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experiment entered their responses using the computer keypad.
The latency between the onset of the stimulus and the pressing of
the first response key was analyzed. Experiment 2 of Rickard and
Bourne (24 subjects) involved two sessions of the same design as
Experiment 1, each with 30 practice blocks. Each block involved
presentation of 16 multiplication problems and 8 digit entry prob-
lems, in which a two-digit number was presented and subjects
entered those numbers using the numerical keypad, just as for their
answers to the multiplication problems. The arithmetic and digit
entry data sets from this experiment are treated as Data Sets 2 and 3.

The fourth data set is from Experiment 1 of Rickard (1997).
Twenty-one subjects solved novel arithmetic problems such as “4
# 17 � ?,” in which responding initially required execution of a
three-step algorithm involving memory retrievals: (1) subtract the
smaller number from the larger one, (2) add 1 to the results from
Step 1, and (3) add the result from Step 2 to the larger number.
Hence, the answer for the example above is 31. In each practice
block, there were six problems that required the algorithm speci-
fied above and six different problems that involved the same
algorithmic relation but for which a different unknown value was
solved (e.g., 5 # __ � 35). Subjects received 9, 15, 21, 24, and 21
blocks of practice in Sessions 1 through 5, respectively. Sessions
3 and 4 were separated by 3 days. The task was designed to study
the shift from algorithm- to retrieval-based strategies in problem
solving, and there was clear evidence that such a strategy shift
occurred.

The fifth data set has not been previously published and in-
volved three sessions of practice on 10 letter–digit or digit–letter
paired associates. The 23 subjects first had one opportunity to
study each paired associate for 5 s. Next, there were 50 recall
blocks of 10 trials each, in which each stimulus was presented once
in each block, randomly ordered. In Session 2, there were 50
additional recall blocks, and in Session 3 there were four recall
blocks. Subjects spoke the response into a microphone equipped

with a voice-key device. Accuracy feedback was provided if the
subject’s response was in error.

Results and Discussion

Four subjects in Data Set 1 and 4 subjects in Data Set 5
exhibited marked RT slowing over the course of practice in Ses-
sion 2. No other subjects exhibited this trend. These subjects were
assumed to have been disinterested or uncooperative, and their
data were removed prior to the analysis described below. Accuracy
was generally high throughout all practice sessions for Data Sets 1
through 4 (� 95%). For Data Set 5, accuracy was very low initially
and was below 95% for the first 11 blocks. Data from those blocks
were therefore not included in the RT curve fits described below,
although they are included in the graphs for reference.

Raw RTs on correct trials were first log transformed, then
averaged over items for each subject, and then over subjects
(excluded from these analyses were a small number of RTs of less
than 200 ms, which were clear outliers based on inspection of the
distributions). A three-parameter power function (RT � a � b �
block–c), which is the best candidate for providing good fits to
speedup in mean RT within a given practice session on the basis of
research to date (e.g., Newell & Rosenbloom, 1981), was then fit
to the anti-log of the mean log RTs, separately for each session
(except for the last session of each data set).1 The value of the
variable practice block was set to 1 for the first block of the fits to
all sessions.

1 Data Set 4 exhibited a shift from algorithm to retrieval; thus, over sessions,
the RTs deviated substantially from the power function (for a discussion of
distortions in power function speedup caused by a strategy shift, see Rickard,
1997, 2004). For fitting that data set in the current analyses, power functions
were used only as an approximation for within-session speedup.

Figure 1. An example of between-session forgetting effects predicted by the model proposed by Anderson,
Fincham, and Douglass (1999).
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Results for the five data sets are shown in Figure 2. Rather than
revealing a comprehensive RT slowing effect as depicted in Fig-
ure 1, or a comprehensive facilitation effect as implied by the
recent procedural consolidation literature, for all 10 predicted
sessions, the extrapolated fit from the previous session revealed an
initial slowing effect followed by an RT facilitation (for both the
slowing and the facilitation effect over the 10 sessions, a sign test
yielded p � .001). These results are not dependent on either the
approach of averaging before data fitting or the power function.
Averaged item-level fits of both power and exponential functions
(for a description of the technique, see Rickard, 2004, p. 77)
revealed the same patterns of RT slowing followed by facilitation.
These results are not surprising given that the effects are readily
apparent by visual inspection of the data.

These patterns are also evident in other data sets. Both arith-
metic data sets described in Rickard, Healy, and Bourne (1994)
show patterns nearly identical to those in Figure 2A. There are also
similar patterns for at least some of the data in Anderson et al.
(1999). In their Figure 2, for example, there appear to be between-
session facilitation effects in most cases, although the nature of
their model fits does not reveal them directly by extrapolation of
the curve fits for each session. In summary, the dual effects of RT
slowing followed by facilitation after a delay between sessions are
clearly robust over a range of commonly studied tasks and levels

of practice (up to five experimental sessions), despite being un-
recognized in the skill literature to date.

Before proceeding, however, it is important to rule out the
possibility that the effects that are interpreted above in terms of
between-session delays instead reflect a more general failure of the
power function to fit well to data. This issue can be addressed by
fitting the power function to practice blocks from the first part of
each session and evaluating the quality of its extrapolated fit to the
remainder of the data from the same session. If the extrapolated fits
are good, then the results outlined above can be confidently inter-
preted as resulting from the between-sessions delay. These analy-
ses were limited to Data Sets 1 through 3 and the first two sessions
of Data Set five, for which there were a relatively large number of
practice blocks per session. For all of these data sets, fits to the
initial series of practice blocks (20 blocks for Data Sets 1–3 and 40
blocks for Data Set 5) were extrapolated to the last 10 practice
blocks of the session. In the between-sessions extrapolations (Fig-
ure 2), both the initial slowing and the subsequent facilitation
effects were clearly evident within the first 10 blocks of each new
session. If those effects reflect a general failure of the power
function to characterize speedup, rather than the effect of the delay
between sessions, similar effects should be evident in the extrap-
olation to the last 10 blocks within each session. The results are
shown in Figure 3. In five cases, the extrapolated curve runs

Figure 2. Anti-logs of the mean log response time (RT) speedup curves along with separate three-parameter
power functions fits to each session. Panel A shows Data Set 1, Panel B Data Sets 2 and 3, Panel C Data Set
4, and Panel D Data Set 5.
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through the data points, in two cases it is somewhat above the data,
and in two cases it is somewhat below the data. The fact that these
biases in fit are not consistent over data sets suggests that they do
not reflect a problem with the power function as a model of
within-session speedup, but rather the sensitivity of the parameter
estimates to noise in the relatively small number of fitted data
points. Critically, in the within-session extrapolations, there is no
case in which the signature pattern of the between-sessions extrap-
olations shown in Figure 2 (a pronounced crossover between the
actual and predicted values within the first 10 blocks of each new
session) is present. It is therefore apparent that the between-session
extrapolation effects shown in Figure 2 are causally related to the
delay between sessions.

Does the Initial Slowing Reflect Warm-Up or Forgetting
in Long-Term Memory?

There are two broad candidate interpretations of the RT slowing
at the beginning of each session relative to the end of the preceding
session. One possibility is that it reflects some type of warm-up
effect that is unrelated to long-term skilled memory processes. A
second possibility is that it reflects a genuine long-term memory
forgetting effect. The notion of warm-up can be understood cog-
nitively at both task and item levels. At the task level, there may

be general (item nonspecific) loading of task-relevant procedures,
refamiliarization with task context, general priming of a memory
network for all items, or even postural or muscular preparation
effects at the beginning of each session. This task-level warm-up
hypothesis corresponds to the set hypothesis in the warm-up dec-
rement literature in verbal and motor learning (for a review, see
Adams, 1961). Because task-level warm-up is by definition item
nonspecific, it should manifest, if present at all, as speedup over
items (trials) within practice block. Task-level warm-up effects
were thus evaluated by plotting mean RT as a function of trial for
the first and second blocks of each session. The results are shown
in Figure 4, averaged over the five data sets. Separate plots are
shown for the first and second blocks of Session 1, and for the first
and second blocks of the average of Sessions 2 through 5. There
was some speedup from the first to the second trial for Block 1 of
Session 1, and to a smaller degree for Block 2 of Session 1 and for
Block 1 of Sessions 2 through 5. There was no evidence of
speedup from the first to the second trial for Block 2 of Sessions
2 through 5. No speedup is evident in any of these cases from
Trials 2 through 8. For Block 3 onward (not shown in the figure),
there was no evidence of speedup over trials within block for any
session of any experiment. Task-level warm-up, then, is limited to
the first trial of the first couple of blocks, and for Sessions 2

Figure 3. Anti-logs of the mean log response time (RT) speedup curves along with separate three-parameter
power functions fits to the first 20 (Panels A and B) or 40 (Panel C) blocks of each session. Fits to the last 10
blocks of each session (open circles) are extrapolations of the fits to data from the earlier part of the same session
(closed circles). Panel A shows Data Set 1, Panel B Data Sets 2 and 3, Panel C Data Set 5.
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through 5, it is limited to the first trial of the first block only. All
other speedup effects over blocks in those sessions can be consid-
ered to be item specific. In light of these results, the first trial of the
first block of each session was not included in the data shown in
Figure 2, and thus the task-level warm-up effect is not present for
the predicted sessions, 2 through 5, in that figure.

Warm-up could also occur at the item level, perhaps as some form
of activation-based item priming that dissipates over the delay be-
tween sessions but is not related to long-term memory strength.
Assuming that such priming saturates after the first trial for each item,
its effect on the RT curve can be eliminated by simply ignoring the
first practice block from each predicted session. Inspection of the fits
in Figure 2 shows that, even with the first block ignored, mean RTs
are slower than, or about the same as, those predicted by extrapolating
from the previous session. In four cases, RTs on the first three blocks
are slower than that prediction, in three cases RTs on the first two
blocks are slower, and in three cases RTs on the second block are
roughly equal to the extrapolated prediction. It thus appears that
neither task-level nor item-level warm-up effects are sufficient to
account for the initial RT slowing after a delay, unless item-level
warm-up does not run to completion until several repetitions of each
item have occurred. It is of interest to note that the most pronounced
slowing effect occurred for Sessions 2 and 3 of the novel paired-
associate task (Panel D), the only task among those considered here
for which subjects would have had no item-relevant pre-experimental
experience. This result is consistent with the possibility that rate of
forgetting decreases with increasing skill level (e.g., Adams, 1952).

Another way to evaluate the item-level warm-up account of the
initial RT slowing is to determine whether the rate of learning beyond
the first few blocks of each session is consistent with what would be
expected by extrapolation of the fit to the previous session, under the
assumption of passive learning (consolidation) between sessions. The

simplest way to model such learning would be to assume that there are
effectively extra “mental practice blocks” between sessions, occurring
outside of consciousness and perhaps during sleep (e.g., Sejnowski &
Destexhe, 2000). To fit this idea quantitatively, the range of values of
practice block that best fits a session can be found, using the param-
eter values for the power function fit to the proceeding session.
Consider for example the Session 1 arithmetic data in panel A of
Figure 2. The best fitting power function parameters had values of
a � 629, b � 1,182, and c �.34. Using these parameter values, the
function 629 � 1,182 � (block � x)�c can be fitted to Session 2 of
that data set, where block is the actual practice block being fitted
(31–60 in this case) and x is a free parameter indexing the number of
hypothesized mental practice blocks between sessions. In these fits,
the first three blocks of each fitted session were removed to minimize
the chance that any of the speedup in the data being fitted reflected
warm-up effects. In each fit, the power function parameters for the fit
to the immediately proceeding session were used. The residuals of
these fits for Sessions 2 onward of all five data sets are shown in
Figure 5. For eight of the nine sessions (the exception being Session
3 of Data Set 1 in Panel A), the residuals are positive toward the
beginning of each session and negative toward the end of the session
(sign test, p � .02), and linear regressions on the residuals yielded a
significant negative slope for all eight of those sessions (� � .05 for
each fit). 2 Thus, throughout eight of the nine sessions, speedup was
faster than could be predicted by the hypothesis of passive practice
between sessions, even when the first 3 practice blocks of the pre-

2 For session three of Data Set 1 (Panel A of Figure 2), the residuals were
mostly negative. This reflects the fact that the asymptote estimate of the
power function fit for Session 2 of that data set was larger than the value
of most RTs in Session 3.

Figure 4. Anti-log of the mean log response time (RT) as a function of trial for Blocks 1 and 2 of Session 1
and for Blocks 1 and 2 of the average of Sessions 2 through 5. Session 1 of Data Set 5 was not included in these
analyses because of the low accuracy rates on the first two blocks. Log RTs were averaged over subjects within
each data set and then over data sets, and then the anti-log of these grand mean log RTs was computed. Only
the first eight trials for each block are plotted, so that each data set could contribute equally to each data point.
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dicted sessions are removed. Note that the same result is obtained in
most cases if the first 5, or even the first 10, practice blocks of the
fitted sessions are removed.

The results of the residual analysis speak against item-level
warm-up as an account of the initial RT slowing in each session.
Instead, these results motivate a two-component model of the
effects of between-session delays on the long-term representation
of cognitive skills. First, there is forgetting in the associative
pathways in long-term memory that support performance, as
Anderson et al. (1999) postulated, resulting in the initial slowing at
the beginning of each session. This forgetting could be global, or
it could be isolated to a subcomponent of the skill. Second, there
is increased potential for new learning as indexed by RT (learning
potentiation) that results in faster performance than would be
expected by extrapolation from the proceeding session.

The novel treatment of forgetting and learning potentiation as
separable factors (presumably reflecting separate mechanisms) in
this article might help resolve the apparent contradictory findings
in the literatures that were noted earlier. One source of the different
outcomes over studies may simply be the use of different mea-
surement techniques. If the focus is on comparison of the first trial
or block of trials of Session 2 to the last trial or block of trials of
Session 1, without consideration of the speedup curve in Session 2,
then the forgetting effect may dominate and performance may be
worse after the delay. If, however, the comparison involves sub-
stantial averaging of data, as in much of the procedural consoli-
dation literature (e.g., Ammons, 1950), then learning potentiation

effects may dominate and immediate performance gains will be
erroneously inferred. This dual-factor model also allows for the
possibility that forgetting will have a stronger impact in some tasks
and designs, whereas learning potentiation may have a stronger
impact in other circumstances, although the model leaves open
why that would be the case.

More generally, the current results highlight the importance in
future work of directly comparing between-session delay effects
for cognitive and procedural skills. It may be that, for procedural
skills, patterns very similar to those observed in Figure 2 will
become evident given a sufficiently fine grain-size analysis, sug-
gesting that similar mechanisms underlie the effects of delays for
cognitive and procedural skills. Alternatively, if in the procedural
skill literature the overnight facilitation effect is indeed immediate,
then different mechanisms might be implicated.

Candidate Theoretical Accounts

Although a thorough theoretical investigation of these between-
session delay phenomena is beyond the scope of this observation,
here I briefly consider two broad candidate classes of theories.
First, there may be some mechanism by which the rate of learning
or the efficiency of performance as indexed by RT (or both)
decreases monotonically over the course of an experimental ses-
sion but returns to its original status after the delay between
sessions. One plausible psychological mechanism is fatigue, which
may be grounded in motivational, affective, or inhibitory pro-

Figure 5. Residual plots for extrapolated fits from the proceeding session. Panel A shows Data Set 1, Panel B
Data Sets 2 and 3, Panel C Data Set 4, and Panel D Data Set 5. In Panel B, closed circles represent the arithmetic
data and open circles the digit entry data. Session 3 of Data Set 5 is not shown as there were only four practice
blocks in that session.
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cesses. Related mechanisms have been proposed in the literature
on reminiscence in motor skill learning (for a review, see Coppage
& Payne, 1981). By definition, fatigue increases over the course of
a session and should be eliminated by a sufficient delay between
sessions. Between-session forgetting would account for the ini-
tially slowed RTs after the delay between sessions, and release
from fatigue at the beginning of each new session would account
for the increased rate of speedup over the first portion of that
session. In this account, the learning potentiation effect for a given
session would be defined relative to the later part of the proceeding
session, in which trial-to-trial learning potential is diminished as a
result of fatigue. For a model that implements similar mechanisms
in accounting for the effects of spaced practice on accuracy in
foreign vocabulary learning, see Pavlik and Anderson (2005).
Alternatively, or in addition to its effect on learning rate, fatigue
may result in slowed (i.e., less optimal) performance toward the
end of a practice session.

A second class of explanations assumes consolidation between
sessions. All of the tasks studied here involved at least 2 nights of
sleep between sessions, so sleep consolidation may apply. Any
consolidation account must contend with the forgetting effects
evident at the beginning of each session. Thus, consolidation in
this case could not take the form solely of passive overnight
learning, which could only oppose or offset the forgetting effect, as
noted earlier. Instead, consolidation in this case would take the
form of learning potentiation. By this account, the neural links (or
some subset of them) that support performance are weakened by
the delay, resulting in the initial slowing, but the system has
nevertheless prepared for the possibility that the task will be
encountered again by increasing the potential for new learning in
some way yet to be determined.

Implications for the Empirical Law of Learning

For more than a century, psychologists have sought a simple and
universal empirical law of practice, focusing mostly on the func-
tion describing speedup (for reviews, see Newell & Rosenbloom,
1981; Heathcote, Brown, & Mewhort, 2000). A primary motiva-
tion behind this work has been to guide theory development, and
a number of theories of skill learning have been influenced heavily
by the prevailing view of what function best describes speedup
(Anderson, 1982, 1993; Anderson & Schooler, 1991; Cohen, Dun-
bar, & McClelland, 1990; Logan, 1988, 1995; Newell & Rosen-
bloom, 1981; Palmeri, 1997; Rickard, 1997). In nearly all curve-
fitting efforts to date, the effects of the delay between practice
sessions have been ignored, with the implicit assumption that they
are negligible (cf. Anderson et al., 1999). The foregoing analyses
demonstrate, however, that those effects must be included in any
successful effort to identify the empirical law of speedup, partic-
ularly if that law is to be used as a constraint on theory develop-
ment.

Fitting of separate three-parameter power functions to each
session, with all parameters free to vary in each session, appears to
provide a good empirical account of speedup in mean RT, as
shown in Figure 2. I refer to this as the unconstrained, session-
specific power function. As of this writing, this appears to be the
only proposed law of learning with potential to provide a sufficient
account of mean speedup in the ecologically realistic case of
multisession skill practice. Although there may be a more con-

strained model that will also fit well to multisession data, our
results appear to eliminate a number of possibilities. First, as noted
earlier, any constrained version of the session-specific power law
that predicts only slowing after a delay, relative to the expectation
based on extrapolation (as portrayed in Figure 1), can be rejected.
Another plausible constraint on the empirical learning function
that was considered earlier and that can be rejected assumes that
the same three-parameter power function describes speedup in all
sessions and that the effect of delay between sessions is solely to
induce passive additional practice between sessions.

I also considered whether one or more parameters of the power
function can be constrained to be the same for each session while
still allowing for good fits. Clearly the parameter b, which along
with the asymptote parameter, a, determines the initial RT of each
session, must be allowed to take different values for each session
to accommodate the substantially faster RTs at the beginning of
each session compared with the beginning of the previous session
(relatively small variations in a from session to session could not
account for these effects).

Estimates of a were quite variable, as is often the case with fits
to relatively short practice series (e.g., Heathcote et al., 2000), so
no strong inferences about possible constraints on that parameter
can be made. However, based on the near certainty that subjects
will eventually suffer from performance-worsening fatigue if
forced to practice such tasks for much more than 1 hr per session,
it seems likely that the effectively achievable asymptotic perfor-
mance will become progressively lower with each new practice
session, necessitating that a be allowed to vary for each session.

The nonlinear rate parameter, c, exhibited an interesting and
systematic pattern of becoming larger with each successive prac-
tice session. Setting aside the first three sessions of Data Set 4, in
which pronounced speedup effects due to the strategy shift to
retrieval are a contaminating factor, and Session 3 of Data Set 5,
for which there were only 4 blocks, the estimated value of c
became larger from session to session in all six cases. In fact, in
five of the six cases, the estimated value of c for a given session
was larger than the upper bound of the 95% confidence interval for
c for the immediately proceeding session. Larger values of c
correspond to a faster rate of nonlinear speedup, and they manifest
visually as a more distinctive “elbow effect” in the learning curve.
This effect is evident in Figure 2 (particularly in Panels A and D).
It thus appears that, with each new practice session, fewer practice
repetitions are required for subjects to approach their within-
session asymptotic performance level. Theoretically, this effect
might reflect faster relearning of the forgetting between sessions
and/or an activation-based priming effect underlying some of the
initial speedup in each session. If such priming constitutes a larger
proportion of total speedup in each progressive session, then larger
values of c would be obtained, other factors held constant. Con-
sistent with these possibilities, the magnitude of the increase in c
from session to session was smaller in supplementary power
function fits wherein the first block of each session was first
removed prior to fitting, and no trend toward increasing values of
c was discernible when the first 2 blocks of each session were
removed (again ignoring the first three sessions of Data Set 4, and
also all of Data Set 5, for which the first 11 blocks of Session 1 had
been removed already due to high error rates, and for which
Session 3 contained only 4 blocks).
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It is also of interest that the estimate of c for a given session was
smaller for 9 of the 10 sessions (ignoring the first 3 sessions of
Data Set 4 and the 1st and 3rd sessions of Data Set 5, for reasons
noted above) with the first block removed (sign test, p � .01). The
value of c did not continue to decrease systematically, however,
when the initial two, three, or four blocks of each session were
removed (all ps � .17). This result suggests that the three-
parameter power function may be subtly ill-fitting for mean RT
data from the first block of each session, even when all of its
parameters are allowed to vary independently for each session.
This result is consistent with the possibility that speedup from the
first to the second block of each session is partly driven by
item-specific, activation-based priming, which appears to saturate
after one block.

It should be noted that the conclusion that all three parameters
must be allowed to vary in session-specific power function fits
does not necessarily imply that the most parsimonious empirical
learning function for mean RT data must have 3 � N parameters,
where 3 is the number of parameters in each power function and N
is the number of practice sessions. Both the forgetting and learning
potentiation effects presumably reflect some underlying construct
that operates as a function of time, sleep, or both. By analogy to the
Anderson et al. (1999) model, it may be possible in future work to
model each of these constructs with one or more free parameters,
where the number of parameters is independent of the number of
practice sessions in an experiment.

Finally, note that Heathcote et al. (2000) have recently argued
that when learning functions are fit to item-level rather than mean
RT data, the three-parameter exponential function fits better than
the three-parameter power function. Their conclusions were based
on fitting of a global three-parameter function to multisession data,
however, and it is unclear whether the advantage for the exponen-
tial function at the item level will hold when data are fitted
separately for each session. To explore this issue, I performed
analyses comparing three-parameter power and exponential func-
tions at the item-level. The exponential function did tend to fit
better—albeit only slightly better—than the power function for
nearly all sessions of all experiments. Thus, in accordance with
Heathcote et al., 2000, it appears that the session-specific, item-
level learning function is better described as exponential rather
than as power. For mean RTs, however, the power function clearly
provides the better fit.

References

Adams, J. A. (1952). Warm-up decrement in performance on the pursuit-
rotor. American Journal of Psychology, 65, 404–414.

Adams, J. A. (1961). The second facet of forgetting: A review of warm-up
decrement. Psychological Bulletin, 58, 257–273.

Ammons, R. B. (1950). Acquisition of motor skills: III. Effects of initially
distributed practiced on rotary pursuit performance. Journal of Experi-
mental Psychology, 40, 777–787.

Anderson, J. R. (1982). Acquisition of cognitive skills. Psychological
Review, 89, 369–406.

Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum.
Anderson, J. R., Fincham, J. M., & Douglass, S. (1999). Practice and

retention: A unifying analysis. Journal of Experimental Psychology:
Learning, Memory, & Cognition, 25, 1120–1136.

Anderson, J. R., & Schooler, L. J. (1991). Reflections on the environment
of memory. Psychological Science, 2, 396–408.

Bourne, L. E., & Archer, J. (1956). Time continuously on target as a
function of distribution of practice. Journal of Experimental Psychology,
51, 25–33.

Brashers-Krug, T., Shadmehr, R., & Bizzi, E. (1996, July 18). Consolida-
tion in human motor memory. Nature, 382, 252–255.

Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of
automatic processes: A parallel distributed processing account of the
Stroop effect. Psychological Review, 97, 332–361.

Coppage, S. J., & Payne, R. B. (1981). An experimental test of current
theories of psychomotor reminiscence. Perceptual and Motor Skills, 52,
343–352.

Digman, J. M. (1959). Growth of a motor skill as a function of degree of
verbal learning. Journal of Experimental Psychology, 57, 257–261.

Heathcote, A., Brown, S., & Mewhort, D. J. K. (2000). The power law
repealed: The case for an exponential law of practice. Psychonomic
Bulletin and Review, 7, 185–207.

Logan, G. D. (1988). Toward an instance theory of automatization. Psy-
chological Review, 95, 492–527.

Logan, G. D. (1995). The Weibull distribution, the power law, and the
instance theory of automaticity. Psychological Review, 102, 751–756.

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition
and the law of practice. In J. R. Anderson (Ed.), Cognitive skills and
their acquisition (pp. 1–55). Hillsdale, NJ: Erlbaum.

Palmeri, T. J. (1997). Exemplar similarity and the development of auto-
maticity. Journal of Experimental Psychology: Learning, Memory, &
Cognition, 23, 324–354.

Pavlik, P. I., Jr. & Anderson, J. R. (2005). Practice and forgetting effects
on vocabulary memory: An activation-based model of the spacing effect.
Cognitive Science, 29, 559–586.

Rickard, T. C. (1997). Bending the power law: A CMPL theory of strategy
shifts and the automatization of cognitive skills. Journal of Experimental
Psychology: General, 126, 288–311.

Rickard, T. C. (2004). Strategy execution in cognitive skill learning: An
item-level test of candidate models. Journal of Experimental Psychol-
ogy: Learning, Memory, & Cognition, 30, 65–82.

Rickard, T., & Bourne, L. E., Jr. (1996). Some tests of an identical
elements model of basic arithmetic skills. Journal of Experimental
Psychology: Learning, Memory, & Cognition, 22, 1281–1295.

Rickard, T. C., Healy, A. F., & Bourne, L. E., Jr. (1994). On the cognitive
structure of basic arithmetic skills: Operation, order, & symbol transfer
effects. Journal of Experimental Psychology: Learning, Memory, &
Cognition, 20, 1139–1153.

Sejnowski, T. J., & Destexhe, A. (2000). Why do we sleep? Brain Re-
search Interactive, 886, 203–223.

Stickgold, R. (2005, October 28). Sleep-dependent memory consolidation.
Nature, 437, 1272–1278.

Walker, M. P., & Stickgold, R. (2006). Sleep, memory, and plasticity.
Annual Review of Psychology, 57, 139–166.

Walker. M. P., Brakefield, T., Morgan, A., Hobson, J. A., & Stickgold, R.
(2002). Practice with sleep makes perfect: Sleep-dependent motor skill
learning. Neuron, 35, 205–211.

Received May 4, 2006
Revision received August 15, 2006

Accepted September 13, 2006 �

304 RICKARD


