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Abstract

A basic but unresolved issue in the study of memory retrieval is whether multiple indepen-

dent cues can be used concurrently (i.e., in parallel) to recall a single, common response. A

number of empirical results, as well as potentially applicable theories, suggest that retrieval

can proceed in parallel, though Rickard (1997) set forth a model that denies that possibility.

In this paper, five quantitative models are developed to test broad candidate principles. In

multiple experiments, subjects were trained to retrieve a vocal digit response for each member

of a set of letter or color cues. In subsequent test and transfer phases, single cue trials were

randomly mixed with dual cue trials on which the two cues always required the same response.

For the first few repetitions of each new set of dual cue items, there was no evidence of parallel

retrieval over any part of the RT distribution. After more repetitions, dual cue trials were per-

formed faster than single cue trials, but only under conditions that were favorable to develop-

ment of a ‘‘chunked’’ dual cue representation. These results indicate that associative

independence is an important modulating variable that must be heeded in any general model

of attention and memory retrieval. Further, the results are most consistent with a model that

places the performance bottleneck prior to the retrieval stage of processing.
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1. Introduction

There is broad agreement in the literature that retrieval from long-term memory

involves some type of parallel search. When a cue is presented, all associated path-

ways are simultaneously activated and compete in some fashion to retrieve a
response (for examples, see Nobel & Shiffrin, 2001; Ratcliff, 1978; Ross & Anderson,

1981). It seems a straightforward step to a related principle stating that two indepen-

dent cues can operate in parallel to retrieve a single, common response. This hypoth-

esis would predict, among other things, that response times (RTs) might be

facilitated when two cues are available, provided that they can be perceived in

parallel with negligible delay and that their RT distributions overlap.

Consider an example taken from the experiments reported below. In Experiment

1, subjects first learned to make a vocal digit response when presented with each of
12 single letter cues. They then entered a test phase in which the single cue trials were

intermixed with dual cue trials (e.g., M L! 4). Dual cue trials were always congru-

ent. That is, the answer was always the same as for the component single letter cue

trials (e.g., M! 4; L! 4). Experiments 3–5 had similar designs but the dual cue

items were constructed from letter and color cues. According to the parallel facilita-

tion hypothesis outlined above, RTs for dual cue items might be smaller than the

RTs for the faster of its component cues when presented individually.

Although no research has directly addressed this hypothesis for the case of mem-
ory recall from two independent cues, several lines of work indirectly support it.

Consider the coactivation effect observed in go, no-go tasks (e.g., Miller, 1982). Sub-

jects must press a key when a specific stimulus, the target, is presented, but withhold

their response when a non-target stimulus is presented. The main effect of interest

here is that RTs are faster when two targets are presented than when only one target

is presented. Further, Miller and others have shown that the magnitude of the RT

facilitation for dual cues often exceeds that expected under a pure separate activation

account, in which the two cues ‘‘race’’ independently and in parallel. Miller termed
this facilitation effect coactivation, because it implies that the two cues jointly acti-

vate a single response node.

Cross-talk effects recently observed in dual task, two-choice RT experiments also

suggest that two cues can simultaneously activate a single response. Hommel (1998)

showed that RTs for the first task completed are faster if the second task has the

same response. This result suggests that the flow of activation to the first response

was occurring in parallel from the two task cues. Logan and Schulkind (2000) inves-

tigated whether cross-talk effects generalize to semantic memory (two-choice catego-
rization) tasks. Consider Experiment 1 of their study. On each trial subjects were

presented with two letters (one above the other), two numbers, a letter and a num-

ber, or the spatial reversal of the letter and number condition. For each stimulus,

starting with the top one, subjects pressed a button that corresponded to the correct

category. Subjects were faster on trials with either two letter or two number cues (i.e.,

compatible trials). Further, the facilitation effect decreased as the stimulus onset

asynchronicity (SOA, the latency between the onset of the first and second task stim-

ulus) increased. The authors interpreted these results as reflecting a cross-talk effect
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similar to that observed by Hommel (1998); activation was flowing from the second

task stimulus to its category representation while subjects were performing the first

task. In Experiments 3 and 4 of the same paper, the authors found cross-talk in lex-

ical decision tasks. Logan and Delheimer (2001) found analogous effects for an ep-

isodic memory task. Subjects learned a list of words, and recognized a list word
faster if both stimuli were from the list.

Superficially at least, the congruent Stroop task provides the closest match to the

current tasks. Slight facilitation is occasionally observed for mean RT in the congru-

ent relative to a control condition, but a more robust effect is that the lower portion

of the RT distribution is below that of the control condition (Heathcote, Popiel, &

Mewhart, 1991; Mewhort, Braun, & Heathcote, 1992; Spieler, Balota, & Faust, 1996,

2000). Eriksen and Eriksen�s (1974) flanker task is closely related. In the typical de-

sign, subjects make a response to a target that is presented in the middle of the
screen. Flanker stimuli, which may have responses that are neutral to, congruent

with, or incongruent with the required target response, are presented as well. The

general finding is that RTs for target identification are smallest when a congruent

flanker is present.

Finally, numerous other studies exploring cued memory access in both animals

and humans have shown that performance improves as the number of available cues

increases (e.g., Jones, 1976; Rudy, 1974). Jones had subjects study pictures with mul-

tiple stimulus dimensions, such as color and location, and then compared recall of
items given one or two of these dimensions as cues. He, among others, found higher

accuracy when two cues were presented, though he did not report response latencies.

However, an increase in accuracy in the context of multiple cues does not necessarily

imply parallel response activation. It is quite plausible that when one of the cues

could not support retrieval, the other one could. Under those conditions, accuracy

should improve even if retrieval through the two cues is attempted sequentially.
2. Potentially applicable theories

In addition to the empirical evidence pointing to the possibility of dual cue facil-

itation in cued recall, there are several theories that, if applied to our tasks, would

appear to predict dual cue facilitation. One straightforward example is modern the-

ories of the Stroop effect (Stroop, 1935; for a review, see MacLeod, 1991), all of

which assume parallel processing of color and word dimensions up to the response

stage of processing (e.g., Cohen, Dunbar, & McClelland, 1990; Logan, 1980; Phaf,
Van Der Heijden, & Hudson, 1990; Schooler, Neumann, Caplan, & Roberts,

1997), resulting in RT facilitation in the congruent condition. If these models are

to be viewed as capturing general properties of information processing, extending be-

yond the Stroop task proper, then they appear to predict dual cue facilitation in our

experiments as well (especially in Experiments 3–5, which involve letter and color

cues).

Logan�s (1988, 1992) instance theory of automatization and Nosofsky and Pal-

meri�s (1997) closely related exemplar based random walk (EBRW) model (see also



246 T.C. Rickard, D. Bajic / Cognitive Psychology 48 (2004) 243–294
Palmeri, 1997) assume that an independent instance is formed on each trial for an

item, and that previously encoded instances race to retrieve the response on each

trial. These theories might easily accommodate a finding of dual cue facilitation in

the current experiments. However, their development to date applies primarily to

the case of a single retrieval from a single cue, and as such those models may not
make strong a priori predictions for the current tasks. Nevertheless, the current ex-

periments should be of value in guiding any future extension of those models beyond

the case of a single cue and a single response.

Wenger (1999) tested a series of memory models that varied along the dimensions

of both representation and process. With respect to process, he interpreted his results

as supporting a parallel retrieval model. Logan and Gordon (2001) proposed a mod-

el that integrates the instance and EBWR models with Bundesen�s (1990) visual at-
tention model. They also added a control mechanism that determines, among other
things, whether or not two tasks will be performed in parallel. As currently devel-

oped, however, that model does not appear to make a priori predictions for the cur-

rent tasks. It is potentially consistent with a finding of dual cue facilitation, but does

not appear to be constrained to make that prediction.

Uniquely, Rickard�s (1997, 1999) component power laws (CMPL) model would

predict no dual cue facilitation if applied to the current tasks. That model was orig-

inally developed to explain the strategy shift to memory-based performance that of-

ten occurs with practice on cognitive tasks. At its core, however, is a theory of
attention with respect to retrieval from long-term memory. Two assumptions are

critical for current purposes. First, learning is assumed to involve formation of a sep-

arate representation (node) in long-term memory for each independently acquired

conjunction of a specific cue and the general task goal (or set). In this paper we will

refer to these nodes as set-cue conjunctions, although the equivalent nodes in the

Rickard (1997) simulation were termed ‘‘problem level’’ nodes. For example, if a

subject has learned to respond by saying ‘‘4’’ when presented with the letter M,

the model assumes that a set-cue conjunction node, representing the conjunction
of the general (i.e., non-item-specific) task set, ‘‘speak the digit,’’ and the stimulus,

M, has been formed. This node, which will be unique for each item in the stimulus

set if single cue training takes place on independent trials, is in turn associated with

the answer (e.g., ‘‘4’’). Thus, activation flows from the stimulus and the task set at

the first level, to the set-cue conjunction at the second level, and then to the response

at the third level.

The second critical assumption is that only one of these set-cue conjunction

nodes can be used at any given moment to retrieve a response. As soon as one
set-cue node is selected, activation of all other cue-set nodes is suppressed, resulting

in a prediction of no facilitation on dual cue trials. If, for example, a dual cue item

such as ‘‘M L’’ is presented, only one of the letters, along with its corresponding

and unique set-cue node, can be selected for retrieval. Hence, the model proposes a

performance bottleneck prior to the retrieval stage of processing, at the set-cue

level of representation.

These two assumptions lead to other predictions as well. One prediction, which

recently found support in studies by Rickard and Pashler (2003) and Nino and
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Rickard (2003), is that two responses cannot be retrieved in parallel from a single

cue, provided again that the two cue–response associations are independent. These

authors had subjects first memorize a vocal digit response for each of 10 visually pre-

sented words. Next, they memorized a left or right key press response for the same 10

visually presented words (in other experiments, equivalent results were found when
more than two key press responses were involved). In the final test phase, blocks of

the digit and key press tasks were interleaved with dual task blocks, in which both

the vocal digit and the key-press responses were performed on each trial. Learning

of the single-task associations took place independently for the vocal and key-press

tasks, yielding an independent goal, or task set, for each task (i.e., ‘‘retrieve the digit’’

and ‘‘retrieve the key-press’’). The CMPL theory therefore predicts that two inde-

pendent set-cue conjunctions were acquired during learning for each stimulus. One

of these was the conjunction between the stimulus and the key press goal, and the
other was the conjunction between the stimulus and the vocal response goal. It fol-

lows from the second assumption above that on dual task trials, retrieval of the two

answers must occur sequentially, at least while the two associations continue to be

represented independently. The data were consistent with this prediction. Nino

and Rickard (2003) showed that the sequential retrieval predictions held even when

subjects were given extensive retrieval practice on the single tasks prior to the dual

task test phase.

The experiments below explored the reverse issue; two different cues were associ-
ated with a single response, under a single task set (i.e., ‘‘retrieve the digit’’). Whereas

the critical factor causing the processing bottleneck in the Rickard and Pashler

(2003) experiments was, according to CMPL, the use of two independent task sets,

in the current experiments it will be the presence of two independent cues. In both

cases, however, the set-cue level of representation is the hypothesized source of the

bottleneck.

The above literature review illustrates two related points. First, the question of

whether two memory cues can independently and simultaneously activate a single re-
sponse is central to current work in several related literatures. Second, there is cur-

rently no consensus regarding the answer. To our knowledge, no studies have

directly addressed the issue in the domain of cued recall.
3. Quantitative predictions of five candidate models

Our primary goal in this line of work is to distinguish between two major classes
of models: cue selection models, according to which only one cue can be used for re-

trieval on a given trial, and parallel models, according to which retrieval can take

place through two or more cues concurrently. Toward that end, we present here

two quantitative models from the cue selection class and three from the parallel class.

These models embody simple and fundamental principles that are subject to straight-

forward evaluation. We intentionally developed these models at a relatively abstract

level. The candidate principles being evaluated will be central to development of

more detailed process models, so it is sensible to evaluate them first. To the extent
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that a particular principle can be falsified at this more general level, any more specific

process models that might embody it are also falsified.

The first three models below allow dual cue RT predictions to be derived param-

eter-free, directly from the single cue data. Merits and limitations of parameter-free

models are considered in Section 9. All five of the models are grounded in the as-
sumption that the cue–response association for one cue of each dual cue item is in-

dependent of that for the other. The case of associative independence is theoretically

crucial. To our knowledge, all potentially applicable parallel models in the literature

treat it as a sufficient condition for parallel memory access. This assumption is rea-

sonable when applied to the first dual cue trial for an item, since prior to that point

all cue–response associations would have been learned and performed on indepen-

dent trials. Extended practice on dual cue items, however, may lead to violation

of it. There is little doubt that sets of independent elements presented together can
be ‘‘chunked’’ into a single memory representation under some conditions (element

binding in episodic memory is perhaps the most familiar example). Such chunking

may well occur for dual cue items after practice in the current experiments. As such,

the models outlined below make their strongest predictions for the first block (de-

fined as one randomly ordered trial for each single and dual cue item) of each

new dual cue performance phase, although approximate independence may hold be-

yond that point.

A secondary goal of the study was to explore whether the model that best predicts
performance in the case of known associative independence continues to hold after

moderate practice, and if not, to make progress in generalizing that model. Subjects

were therefore given at least 20 blocks of dual cue testing over the course of each

experiment.

3.1. Random cue selection (the RS model)

Both this model and the next assume three sequential and stochastically indepen-
dent processing stages: cue perception, cue selection, and retrieval and execution of

the response from the selected cue. Subjects must select one cue at the expense of the

other, and retrieval takes place only through the selected cue. Once a cue is selected,

retrieval takes place exactly as it would if that cue were presented alone. A distin-

guishing property of the RS model is that subjects have no information at the mo-

ment of cue selection regarding which cue is likely to yield the faster response.

Rather, cue selection on each dual cue trial is assumed to be random, with each

cue having an equal selection probability (.5). In the simplest case, in which the
cue selection stage has zero latency, this model predicts that, for each dual cue item

of each test block,
lD ¼ ðl1 þ l2Þ=2þ lDp; ð1Þ
where l denotes a population mean RT (including all stages, from stimulus presen-

tation to the motor response), lD is the population mean for a dual cue item, l1 and l2

are the population means for two single cues constituting the dual cue item (when

presented by themselves), and lDp represents any increase in perceptual latency when



T.C. Rickard, D. Bajic / Cognitive Psychology 48 (2004) 243–294 249
two cues are presented, relative to perceptual latency for a single cue. Note that this

equation constitutes a lower bound prediction for the RS model, since it assumes zero

cue selection latency. We will set aside lDp for the moment and return to it later.

The RS prediction for the dual cue mean can be derived from the single cue data

in the following way. Each test block included one trial for each dual cue item (e.g.,
M L) and one trial for each of its single cue components (e.g., M and L). These three

items constitute a matched item triplet. Thus, on each test block, an expected value

prediction for each dual cue item can be generated by computing the mean RT for its

component single cue trials (e.g., M and L) on the same block. If the RS model is

correct at the level of each of these item triplets, then these dual cue predictions, av-

eraged over all item triplets within each practice block, provide the correct prediction

for the dual cue mean on that practice block. For this model alone, this result is al-

gebraically equivalent to simply taking the sample mean of all single cue items and
using it to predict the dual cue mean.

The model�s predictions are not restricted to the mean. It also predicts that the

population RT distribution function governing each dual cue RT on each practice

block is an equally weighted mixture of the RT distribution functions for its two

component single cue items on the same practice block. Details of modeling the dual

cue distributions based on the single cue data will be discussed in Section 4.2. Note

also that because cue selection is assumed to occur prior to initiation of answer re-

trieval, error rates, as well as RT distributions on error trials, are also predicted to be
equivalent for single and dual cue items.1;2

For the case of dual letter cues (Experiments 1 and 2), there is evidence that the

lDp term is greater than zero. To generate an unbiased RS prediction, its value needs

to be approximated. Fortunately, the literature provides information relevant to this

issue. A number of studies have shown that two letters can be perceived in parallel

(Egeth & Dagenbach, 1991; Pashler & Badgio, 1985; Shiffrin & Gardner, 1972; van

der Heijden, 1975). Thus, if a cue selection model fits the data best, that result cannot

be attributed to a perceptual bottleneck. Further, the Pashler and Badgio results,
confirmed over multiple experiments, indicate only about a 20ms delay in perception

of two digit cues compared to one. Their task is sufficiently similar to ours to expect

that lDp will be of roughly the same magnitude here. Nevertheless, to provide direct

evidence for the magnitude of this delay, we performed an auxiliary experiment (see

Appendix A) that was matched as closely as possible to our letter experiments.

Consistent with expectation, the results yielded an estimate for lDp of about 20ms.

This 20ms correction was added to the mean prediction for each of the models

for Experiments 1 and 2. The standard deviation for the lDp estimate in the experi-
ment described in Appendix A was only a few milliseconds. Thus, as a close approx-

imation of the lDp effect in the distribution modeling to be discussed later, a constant
1 Since the stimulus set is relatively small and the items highly familiar, it is reasonable to assume that

response errors based on perceptual miscoding were rare.
2 Note, however, that the model does not require that the RTs on error and correct trials will have the

same distribution. Error RTs might, for example, result from weak and poorly formed cue–response

associations.
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value of 20ms was added to each single cue RT that was used to create the predicted

distribution.

Two factors should mitigate any remaining concern that the reader may have re-

garding dual cue perceptual delay. First, in Experiment 1 of the Logan and Schul-

kind (2000) study, the longest SOA was 900ms, whereas the first task was
probably completed or in the motor stage in less time on most trials. Thus, the

900ms SOA condition was essentially a single cue condition, making the 0 vs.

900ms SOA conditions perceptually analogous to the two versus one cue conditions

in Experiments 1 and 2 of this paper. The fact that they found dual task facilitation

in the 0 relative to the 900ms conditions for compatible items demonstrates that any

perceptual delay that may be caused by the presence of two letter cues is not suffi-

cient to mask facilitation, even in a quickly executed two choice RT task in which

the magnitude of potential facilitation is relatively modest. The two versus one letter
facilitation effect observed in the go, no-go task also indicates this fact. Those results

should also alleviate any concerns regarding our implicit assumption of context in-

dependence more generally (i.e., the assumption that subjects do not treat single and

dual cue items differently, beyond the effects intended in the manipulation). Single

and dual letter items are mixed within blocks in both the cross-talk and go, no-go

paradigms, just as in the current experiments, and dual cue facilitation was observed.

Second, in Experiments 3–5, cues were colors and letters, and in Experiments 3 and 5

they took the form of colored letters. As discussed in the introduction to Experiment
3, the literature indicates no dual cue perceptual delay at all in those cases. Hence,

lDp was set to zero in those experiments.

3.2. Efficient cue selection (the ES model)

This model is equivalent to the RS model, with the crucial exception that the more

efficient cue of each dual cue pair (i.e., the cue yielding faster retrieval on average on

single cue trials) is always selected on each dual cue trial. This model thus assumes
that subjects have perfect information as to which cue is expected to deliver the faster

response (i.e., as to which cue is more efficient). For now we will not speculate on the

nature of this information, or on the conditions in which this assumption might be

psychologically viable, but we will return to this issue later. Again assuming zero cue

selection latency, this model�s prediction for each dual item on each practice block is:
lD ¼ minðl1; l2Þ þ lDp; ð2Þ
where minðl1; l2Þ refers to the minimum of its component single cue means, l1 or l2.

The ES prediction forms the lower bound RT prediction for cue selection models

as a general class. If dual cue RTs are significantly below this boundary at any point
on the RT distribution, and if the two cues can be considered independent, then the

entire class of cue selection models can be rejected. The ES model is thus crucial to

our long-term goal of discriminating between cue selection and parallel models as

general classes.

Note that the RT distribution prediction of the ES model is closely related to the

Grice inequality (Grice, Canham, & Gwynne, 1984; Townsend & Nozawa, 1995),
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which specifies the upper bound RT that is possible for any parallel race model (cor-

responding to the extreme case of perfect positive dependency between the two re-

trieval latencies; Colonius, 1990). More specifically, the ES prediction is identical

to the upper bound defined by the Grice inequality.

An expected value prediction from the ES model for each dual cue item on each
block can be derived from the single cue data using a technique directly analogous to

the matched item triplet estimation process that was described for the RS model. In

this case, however, only the efficient cue of each pair should be used as the predictor.

Of course, the efficient cue of each single cue pair needs to be identified before this

selection can be done. We approached this problem by first computing the mean RT

for each single cue item, over all test blocks (at least 20 in each experiment). For each

dual cue pair, the component single cue with the faster sample mean on single cue

trials can then be treated as the ES prediction for the corresponding dual cue item
(sans lDp).

This approach assumes that the sample means for the two cues always have the

same magnitude ordering as do their underlying population means. If this assumption

is correct for all items, then the cue that is identified as efficient for each cue pair based

on the sample data will always be the more efficient cue in the population. However, if

this assumption is in error—as it inevitably will be on occasion when only modest sam-

ple sizes are available—then this estimate turns out to be too low. Essentially, it cap-

italizes on chance variations in the sample means, inevitably pushing the estimated
prediction below the true ES prediction. A method for adjusting for this bias, appli-

cable at the level of the RTmean and distribution predictions over items and subjects,

is described in detail in Appendix B. The analyses in that appendix demonstrate that,

to arrive at an unbiased ES prediction in the pooled data, the slower member of a dual

cue pair should be eliminated from the ES prediction only when the absolute value of

a t test on the sample means of the RT data from the two cues exceeds 1.0. Otherwise,

both members of the single cue pair should be included in the computation of the ES

prediction for their corresponding dual cue item. In the current experiments, the bias
in the mean prediction that would be introduced by not making this correction would

be only about 20ms. Nevertheless, this adjustment was integrated into the derivation

of the ES prediction in each experiment to obtain maximum validity. Note that

including this adjustment should make it easier to reject the ES model in favor of a

parallel model, because it increases the value of the ES prediction.

Once the efficient cue for each dual cue pair was selected, and the other, ‘‘ineffi-

cient’’ cue eliminated (when appropriate), the averaging over items and subjects to

obtain the ES prediction for the mean on each test block was performed just as it
was for the RS model. As was the case for the RS model, the ES predictions extend

beyond the mean, to the RT distribution and the error rate.

3.3. Unlimited capacity independent parallel retrieval (the race model)

The race model considered here assumes that both cues can participate indepen-

dently and in parallel in retrieving the response throughout both their perceptual

and retrieval stages. Processing within the retrieval stage is assumed to be capacity
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unlimited. According to this model, dual cue retrieval can be characterized as a

horse race, with the finishing time of each horse, or cue, being the same on average

as its finishing time when running alone. The first cue to reach the ‘‘finish line’’ on a

dual cue trial determines the RT, the response, and the accuracy on that trial. For

discussions of various types of parallel models and their properties, see Colonius
and Ellermeier (1997), Colonius and Vorberg (1994), Compton and Logan (1991),

Diederich and Colonius (1987), Logan (1988, 1992), Miller (1982), Rohrer, Pashler,

and Etchegaray (1998), Schweikert (1983), Townsend and Ashby (1983), Townsend

and Colonius (1997), and Townsend and Nozawa (1995). This model�s population
mean prediction for each observed dual cue RT is
3 I
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lD ¼ lminðRT1;RT2Þ þ lDp; ð3Þ
where min(RT1,RT2) refers to response time for retrieval through the ‘‘faster’’ cue
on each dual cue trial.

Assuming that general performance efficiency does not fluctuate much from trial-

to-trial within each test block, an expected value race prediction for a given dual cue

trial can be obtained by selecting the faster RT from its component single cue trials

within the same practice block. For example, consider the dual cue item M L in Ex-

periment 1. By picking the faster RT of the M and L single cue trials within a given

block, a random observation from the theoretical RT distribution of the correspond-

ing dual cue item (M L) on that same block is approximated.3 Note that, unlike the
cue selection models, the race model can take advantage of trial-to-trial variability in

retrieval latency for each cue on each trial, resulting in RT predictions that are al-

ways below that of the ES model, provided only that the RT distributions of the

two cues overlap. As was the case for the preceding models, the subset of single

cue data that corresponds to the race prediction for the mean also provides predic-

tions for both the dual cue RT distribution and the error rate.

3.4. A limited capacity parallel retrieval model (the LC model)

The hypothesis that dual cue retrieval is parallel but with limited capacity is also

viable. Unfortunately, any limited capacity account will require one or more free pa-

rameters to describe the nature and extent of the capacity limitation and thus it is not

possible to compare it on an equal footing with the models introduced above. Nev-

ertheless, it is informative to consider a simplest case limited capacity account that

can be derived as a transformation of the single cue data. Our goal here is not to
n its purest form, this model should include a correction for motor processing latency. Since on dual

als a single motor response is executed after the retrieval race is completed, the motor component of

gle cue RTs cannot contribute to facilitation resulting from the race. By estimating the race

tion from the single cue data, we implicitly assume that it does. However, simulations in which the

latency was assumed to be 100–150ms, with a coefficient of variation of .2, suggest a bias due to this

of less than 10ms [for an analogous simulation, see the appendix of Nino and Rickard (2003)]. In

f the data patterns observed in the experiments, this effect size can be ignored for both this model

e next without compromising theoretical inference.
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exhaustively test limited capacity models as a general class. Rather, we sought to

evaluate the fit quality of one simple implementation and to identify challenges that

may remain for future modeling efforts within this framework.

At the core of any model that assumes limited capacity retrieval through separate,

non-interactive channels must be a function that transforms the single cue RT distri-
bution into the predicted RT distribution for that cue on dual cue trials. We chose

the simplest case function in which each observation from the single cue distribution

is multiplied by a coefficient whose value is greater than one. With this coefficient

added, the RT distribution has a larger mean and standard deviation than for the

same cue when presented alone, but a general shape that is unchanged. Expressed

mathematically, the population mean prediction for each observed dual cue RT is:
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where c is the limited capacity coefficient. This model has the same assumptions that

were set forth for the race model. This equation differs from the race equation (Eq.

(3)) only by the parameter c.4 As for the other models, the LC model assumes cue

independence, and thus its strongest prediction is for the beginning of each test

phase. The value of its free parameter, c, was thus optimized for the RT data from

the beginning of test.

There are of course other candidate parameters in the general class of limited ca-

pacity models, accounting for other possible factors such as trial-to-trial variability
in total available capacity, random fluctuations in capacity allocation, strategic ca-

pacity allocation, multi-parameter and non-linear RT transformations, and mixtures

of self-terminating and exhaustive retrieval trials. There are also other types of par-

allel models that assume a multiple retrieval random walk process instead of a single

retrieval on each trial (e.g., Nosofsky & Palmeri, 1997). We did not attempt to fit

these more complex models, though we do discuss several of them later.

3.5. Coactivation

This model adopts the parallel retrieval assumption of the race model, but instead

of assuming that each cue activates a separate response token, it assumes that

activation from the two cues converges on a common response. It is not possible

to derive instructive RT predictions from the single cue data for this model, because
ultiplying single cue RTs by the coefficient c inflates not only the retrieval latency, as desired, but

e perceptual and motor latencies, which would not be expected to increase since the limited capacity

ent applies only to the retrieval stage of processing. However, any distortion caused by these

would be small relative to the mean dual cue RTs of about 1200ms on the first test block. If the

tual and motor components could be removed, and only the retrieval component of the RT inflated,

mary consequence would be a modest reduction in the distribution variance. Given the consistent

of results obtained in all five experiments, and the highly similar shape of the race and LC

ution fits, such distortions could have no effect on the theoretical conclusions drawn. Indeed, given

tcome, removal of those variance components from the LC model would only worsen its fits. Note

e motor bias (Footnote 3) and the bias described in this footnote work against each other, partially

ng their effects for the LC model.
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the function that would combine dual cue activation at the output node is not

known. However, if dual cue RTs fall significantly below the prediction of the race

model, coactivation is implied and analytical techniques are available to determine

whether or not any type of separate activation parallel model can account for the

data (e.g., Miller, 1982).
4. Experiment 1

Subjects were first trained to a learning criterion on each of 12 letter–digit asso-

ciations. They then began a test phase in which all single cue items were interleaved

with six dual cue items on each of 20 blocks. Letter order for each dual cue item was

left–right reversed from block-to-block. Thus, if M L was a dual cue item on block 1,
then L M was a dual cue item on block 2.

4.1. Method

4.1.1. Subjects

Twenty University of California at San Diego undergraduate students partici-

pated for course credit.

4.1.2. Materials, design, and procedure

The test stimuli consisted of 12 letters, presented either singly or in pairs. Each

letter stimulus was 3mm wide and 5mm tall, and the distance between letters pre-

sented in a pair was 3mm. Responses consisted of spoken digits, 3–8. Each digit re-

sponse was mapped to exactly two letter stimuli, and letters presented in a pair were

always associated with the same response. The complete stimulus set thus consisted

of all 12 single-letter stimuli, along with 6 dual-letter stimuli.

Subjects were tested individually using IBM-compatible personal computers. All
experiments were programmed using Micro Experimental Laboratory software (ver-

sion 2.01). This software, along with the voice key apparatus (model 200A), was pur-

chased from Psychology Software Tools. Each subject was seated about 50 cm from

a 35.5 cm color monitor, and approximately 5 cm from a microphone. Subjects were

instructed to place their elbows near the edge of the table, with their hands over their

arms. This procedure kept the subject at a constant distance from the microphone

and monitor. The program was then initiated and the experimenter read aloud the

instructions presented on the screen while the subject read along silently.
The first three blocks of items were always study blocks. In these blocks, only the

single-letter stimuli were presented. On each trial, the subject was simultaneously

presented with a single-letter stimulus (e.g., M) the answer (e.g., 8), and instructions

to memorize the answer. After 5 s, these instructions were replaced by instructions to

make the correct response when ready. After the subject responded, the computer

proceeded by presenting the next item. Each letter appeared in exactly two trials

per block, randomly ordered. After completing two study blocks, the subjects were

asked whether they felt sufficiently comfortable with the task to proceed to the trials
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in which they would be required to generate the answers from memory. If they re-

sponded ‘‘no,’’ they were allowed one additional study block.

Before beginning the dual cue test phase, subjects were given a series of single

cue performance blocks in which they had to demonstrate a minimum degree of

proficiency in recalling the answers. Each block again consisted of 24 randomly or-
dered trials, with each single letter stimulus presented twice. Every trial proceeded

as follows: (1) the message ‘‘Get Ready!’’ appeared in the center of the screen for

400ms, (2) the screen went blank for 200ms, (3) an asterisk fixation point ap-

peared in the center of the screen for 400ms, (4) the screen went blank as before,

and (5) the letter stimulus was presented. The letters always appeared directly to

the left or right of the location where the fixation asterisk had appeared; each letter

appeared in both positions in every block. Upon presentation of each stimulus,

subjects were required to speak into the microphone the answer they had earlier
memorized, and to do so as quickly as possible while being as accurate as possible.

After the subject responded and the voice key tripped, the experimenter used the

computer keyboard both to enter the subject�s response and to record whether

the voice key tripped properly. The computer then provided accuracy feedback

and, if the subject was in error, presented the correct response. Each block con-

cluded with a listing of the percent of accurate responses and the mean correct

RT. The subjects continued to receive these blocks until accuracy of at least

90% was attained, at which point the learning phase ended.
Before the start of the testing phase, instructions were presented on the screen and

simultaneously read aloud by the experimenter. These instructions informed the sub-

ject that some trials would consist of single letters, and some trials would consist of

letter pairs. It was stated that each pair would consist of two letters that had been

associated with the same digit during the learning phase. Thus, subjects understood

that both letters always provided convergent information about the correct response.

It was also made clear to subjects that they should give only one response, not two,

when presented with a letter pair.
Trial events during the testing phase matched those from the training phase. Each

block consisted of 18 trials, with one presentation of each of the 12 single-letter

items, and one presentation of each of the 6 dual cue items. Single letter cues always

appeared to the left or right of the location where the fixation asterisk had appeared.

When pairs were presented, the two letters straddled this central location. However,

for both single and dual cue items, there was block-to-block reversal in whether a

particular letter appeared to the left or right of the fixation point. Thus, if M and

L were letters that had been associated with the same number, the dual cue item
would be ‘‘M L’’ in some blocks, and ‘‘L M’’ in an equal number of other blocks.

There were a total of 20 test blocks. Subjects were permitted to take a brief break

at the midpoint of the experiment.

4.2. Results

Fig. 1 shows the test phase mean dual cue RTs (with errors and incorrect voice

key trips excluded) as a function of test block, along with the predictions of the



Fig. 1. Mean dual cue RTs for Experiment 1 as a function of test block, plotted against the predictions of

the RS, ES, and race models. The dotted line just underneath the RS prediction is the mean of the single

cue data, unadjusted for lDp.
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RS, ES, and race models (the grand mean of single cue items, with no lDp adjust-
ment, is also shown as a dotted line for reference). Block means were computed first

over items for each subject, and then across subjects. The fits of the LC model will be

shown only on the RT distribution plots to be discussed later. For reference, how-

ever, that model�s fit to the dual cue means can always be exact on the first test block,

due to its free parameter. In all cases it predicts that dual cue RTs decrease across

test blocks at a rate similar to that predicted by the race model.

On the first three blocks, the mean dual cue RTs were above not only the ES pre-

diction but also the RS prediction. They never fell systematically below the ES pre-
diction throughout the 20 test blocks. In fact, the dual cue means converged on the

ES prediction at about block 12 and remained roughly parallel with it for the re-

mainder of the test. To evaluate whether the faster rate of speed up for the dual

cue items is statistically significant, a within subjects analysis of variance (ANOVA)

with factors of Fit (prediction versus dual cue data), Block, and their interaction was

conducted for each model. For this and all other statistical tests, a was set to .05. In

all cases, the effect of Block was highly significant. The ANOVAs confirmed the in-

teractions between Fit and Block evident in the figure; the F statistics, each with 19
and 361 degrees of freedom, were 2.76, 4.40, and 7.94 for the RS, ES, and race mod-

els, respectively (all p�s<.001). Because of these significant interaction effects, there is

little to be gained by reporting the main effects of Fit. Next we investigate the model

fits more precisely through RT distribution analyses conducted separately for data

from the beginning and end of the test.
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4.2.1. Cumulative distribution fits

Cumulative distribution tests were performed to determine whether the model fit

results for the mean held across the entire RT distribution. No attempt is made here

to fit parametric distribution models to the data. Rather, we simply compared the

empirical distribution shapes for the observed and predicted dual cue RTs for each
model.

For the race and LC models, each of the six dual cue RTs on a test block is

matched to a single predicted RT that was derived from the single cue data on the

same test block, in the manner described above, yielding six predicted dual cue

RTs for each model. For the RS model, there are two predicted values for each dual

cue item; one from each of its two component cues on the same test block. To equate

the number of data points used in the distribution fits for each model, these 12 pre-

dictions on each block for the RS model were reduced to six predictions by randomly
selecting one of the two single cue items as the prediction for each dual cue item. This

random selection process exactly simulates the random cue selection process as-

sumed in that model. For the ES model, there was a single prediction for each dual

trial for most item triplets, but for some triplets both single cues constituted predic-

tions. This situation resulted from the method used to correct the ES prediction for

statistical bias (see Appendix B). Just as for the RS model, one of the two single item

RTs for each of those item triplets was randomly selected as the ES prediction for the

distributions fits. Analyses of the distributions that resulted from the simulations in
Appendix B verified that the ES distribution prediction derived in this manner

matched the true, known ES distribution, demonstrating the validity of the

approach.

By hypothesis for each model, each of the six predicted RT values are random de-

viates taken from the same RT distribution as their six matched dual cue datum.

Thus, if a given model is correct, the predicted and observed dual cue cumulative dis-

tributions for data averaged over items and subjects must be identical in the popu-

lations, and statistically identical in the samples. This is the case no matter how the
data are treated, either without pooling, or by pooling over items or blocks to form

quantiles of averaged data, provided that there is a matched single cue prediction for

each dual cue observation. The data that are presented below were pooled into av-

erage quantiles based on a rank ordering of the item RTs for each subject within

each test block. Separate cumulative plots of the non-pooled, raw data yielded essen-

tially identical results. The results below are thus not an artifact of the particular

data pooling procedure that was used.

Cumulative distribution plots were constructed in the following way. The RTs for
each subject and each test block were rank-ordered over items from fastest to slowest,

separately for dual cue items and for the sub-sets of the single cue data that consti-

tuted the predictions for each model. In the current experiment there were six dual

cue items and six corresponding single-cue predictions per model for each block. This

ranking procedure thus generated an estimate for each of six quantiles of the dual cue

distribution, along with an estimate for each of six quantiles for each model, sepa-

rately for each subject and test block. These rank-ordered data were then averaged,

by rank, over the appropriate subset of the test blocks for a given fit (see below),
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and then over subjects, yielding one grand mean for each of the six quantiles for the

dual cue items, and one grand mean for each of the six quantiles for each of the model

predictions. Thus, all data that were in rank position one were averaged together over

blocks and then over subjects to produce a grand mean for quantile one, etc. Note

that the item ranking was done purely on the basis of RT, so that a given item might
be in different rank positions in the observed and predicted distributions due to ran-

dom fluctuations. All responses, regardless of accuracy, were included in this analysis.

Typically this procedure raises the possibility that error RTs may distort the distribu-

tions. However, in this case, all fitted models make RT predictions for both correct

and incorrect trials, thus ruling out this type of bias.

For the test phase of this and all subsequent experiments, separate distribution fits

were performed for data from the first few test blocks and for data from about the

last half of the test. The fits to the first few test blocks were designed to test the mod-
els under conditions in which cues are most likely to be independent. The blocks to

be included in these fits were determined separately in each experiment by first in-

specting the quantile values on the first block for the dual cue items, relative to

the values predicted by the models, and then including all successive test blocks

on which the ordinal relations between the dual cue RTs and model predictions

on each quantile remained the same. For example, if on block one all RT quantiles

for the dual cue data were above the prediction of the RS model, then data from sub-

sequent, consecutive blocks were averaged with the first block data only if dual cue
RTs continued to be roughly equal to or above the RS prediction on all quantiles on

those blocks.5 In this way, noise in the distribution fits to the data from the begin-

ning of the test phase could be reduced without the risk of masking the ordinal level

outcome. Selection of blocks to include in the distribution fits toward the end of the

test was done by visually inspecting the graphs of the mean RTs and estimating the

first block at which roughly steady-state performance had been reached. That and all

subsequent test blocks were included in the distribution fit. In no case was the distri-

bution fit materially affected when the estimate of the onset of steady-state perfor-
mance was moved to a later block.

Cumulative distribution fits of the various models are shown in Fig. 2. Data av-

eraged over the first three test blocks are shown in Panel a and data averaged over

the last 9 test blocks are shown in Panel b. For each model fit discussed below, the

mean over quantiles of the absolute differences between dual cue data and the model

prediction (the objective function in fit optimization for the LC model) is provided.

For the LC model, the parameter value, c, for the optimal fit is also provided. Op-

timization for that model was achieved by iterating through values of c, from 0 to
1.0, in increments of .01, to find the smallest mean absolute deviation. The LC model

fit was optimized for the cumulative distribution fit to the beginning of test, and c
was set to the same value for the fit to the end of test. After optimization, matched
5 Blocks exhibiting a numerically minor reversal for one or two quantiles that did not replicate on the

following block were also included under the assumption that these reversals were due to random

fluctuations.



Fig. 2. Model fits to the cumulative RT distribution for dual cue items in Experiment 2. Data in Panel a

are averaged over the first three blocks of the test and in Panel b over the last nine test blocks.
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t tests were performed on the subject level means for each quantile for each model

(see Miller, 1982, for simulations speaking to the validity of this approach). Testing

of distribution fits in this way has an advantage over global fit tests, such as v2, in
that it provides explicit information about quality of fit at multiple locations of

the distribution. It is especially useful when there are multiple opportunities for rep-

lication, as was the case here.

For the first three blocks (Panel a), the RS model under-predicted RTs on the low-

er quantiles (1–3, 120; i.e., the predicted and observed dual cue RTs were significantly

different for the first three quantiles and the mean absolute prediction deviation was

120ms). The ES (1–5, 123) and race (1–6, 274) models also under-predicted RTs. The
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LC model fit the data best (1–3, 6; 100; c ¼ 1:28). Note, however, that the LC model

must fit the central tendency well due to its free parameter. For the last nine test

blocks (Panel b), the RS model over-predicted (1–6; 47), and the race model under-

predicted (2–6; 92) the dual cue RTs, but the fit of the ES model was quite good

(nil; 11). The LC model fit poorly (1–5, 143).

4.2.2. Error analysis

Error rates were analyzed for the same subsets of data that were analyzed in the

distribution fits. Inspection of the error data in all experiments revealed substantial

floor effects as well as pronounced right skew. Some subjects made no errors, most

made occasional errors, and typically one or two subjects made frequent errors, par-

ticularly at the beginning of a new dual cue test phase. As such, ANOVAs on the

mean error data are not appropriate. Instead, we used the non-parametric Wilcoxon
test for matched samples (Hayes, 1988). The dual cue error rate collapsed over the

first three test blocks was .04, compared to predictions of .061 by the RS model

(p ¼ :010), and .038 and .034 by the ES and race models, respectively (p�s>.2). On

the last nine blocks of the test, the dual cue error rate was .008, compared to predic-

tions of .023 for the RS model (p ¼ :059), and .014 and .019 for the ES and race

models, respectively (p�s>.2).
A similar basic pattern of results was obtained in Experiments 2–5 below. Error

rates in those experiments were low with substantial floor effects and did not mean-
ingfully discriminate among the models. As such, the error results will not be dis-

cussed further.

4.3. Discussion

The results are more consistent with the cue selection class of models. The finding

that the mean dual cue RTs were initially above even the RS prediction is striking

and unanticipated by the literature. But if subjects must select one cue at the expense
of the other, it makes sense. It is unclear how subjects would immediately know, on

the first dual cue trial, which cue is more efficient for each pair. The RS model did

not fit the data very well at the distribution level, however, suggesting that the slow

initial performance did not reflect purely random cue selection. The convergence of

RTs on the ES prediction for both the mean and the entire distribution toward the

end of practice suggests that subjects become much more efficient at cue selection

over the course of the test, possibly through mechanisms to be considered in Section

9. The simplest interpretation of the test results is that subjects underwent a transi-
tion from some type of ‘‘inefficient’’ cue selection to efficient selection.

One of the more powerful sources of evidence against the LC model is that it,

along with the race model, exhibited systematic under-prediction of the variance

and skew in the distribution fits. These effects can be understood by noting that

slower RTs are filtered out by the competition between the two cues in parallel mod-

els. This phenomenon is not specific to the parallel models that were fit. Rather, it

applies to the optimal fits of many types of parallel models in which the first cue

to retrieve a response determines performance.
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5. Experiment 2

This design is identical to that of Experiment 1, with the following three excep-

tions. First, during the initial study phase, both dual and single cue items were pre-

sented. This modification allowed us to determine whether the results of Experiment
1 might reflect some type of dual cue novelty effect at the outset of the test phase.

Second, the left–right ordering of the dual cues was not reversed from block-to-

block. It is possible that, if the dual cues are always in the same spatial order, dual

cue facilitation will be observed after sufficient practice. Third, we included a transfer

phase after the main test phase, in which all of the old items, as well as the left–right

spatial reversal of all items, were presented.

5.1. Method

5.1.1. Subjects

Sixteen University of California at San Diego undergraduate students partici-

pated for course credit.

5.1.2. Materials, design, and procedure

Each subject received three mandatory study blocks, and, if they so chose, a max-

imum of two additional study blocks. Subjects next went into the test phase, in which
all single and dual cue items were mixed within each block. After the 20 test blocks

were completed, subjects were given three transfer blocks. On each transfer block

they were presented with (1) all old single and dual cue items, (2) reversed single

cue items (if left of fixation asterisk during test, then right of asterisk at transfer,

and vice versa), and (3) reversed dual cue items.

5.2. Results and discussion

The mean correct dual cue RTs are shown in Fig. 3, along with the model predic-

tions. The dual cue RTs closely match the ES prediction until about the sixth test

block, after which they fell below it, approaching the race prediction by the end

of practice. The ANOVAs (identical to those performed in Experiment 1) revealed

a significant Fit by Block interaction effect for the race model, F ð19; 285Þ ¼ 2:71,
p < :001, but not for either the RS, F ð19; 285Þ ¼ 1:17, p > :2, or ES model,

F ð19; 285Þ ¼ :66, p > :2. A supplemental linear regression on the difference scores

between the ES and dual cue RTs on each block, however, revealed a reliable slope,
tð15Þ ¼ �2:8, p ¼ :012, indicating that there was an interaction even for the cue

selection models.

Although the inclusion of the dual cue items in the initial study phase of this

experiment resulted in significantly faster mean dual cue RTs at the beginning of test,

those RTs were still most consistent with the ES model. Note also that associative

independence may not have held at test in this case due to the prior dual cue practice.

The consistent left–right ordering of the dual cue stimuli is presumably a factor be-

hind the substantially faster dual cue RTs by the end of test in this experiment, in



Fig. 3. Mean dual cue RTs for Experiment 2 as a function of test block, plotted against the predictions of

the RS, ES, and race models. The dotted line just underneath the RS prediction is the mean of the single

cue data, unadjusted for lDp.
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comparison to Experiment 1, although the introduction of dual cue items during the

initial study phase might also have played a role in that outcome. In any case, the ES

model clearly does not hold by the end of practice in this case.

It is apparent that none of the models developed in the introduction can fully ac-

count for dual cue performance after practice in this experiment. One elaborative ac-
count is that independent parallel retrieval may only emerge with increasing

automatization of single cue items, and perhaps also with increasing automatization

of the task context and goals. According to such a model, dual cue processing would

initially reflect cue selection, but would eventually transform into independent par-

allel processing. A related account is that the capacity that is required to retrieve

through a given cue decreases as retrieval gets less effortful with dual cue practice.

Neither of these models can directly explain why dual cue facilitation after practice

was observed here and not in Experiment 1, though it could be that introduction of
dual cue items during the initial study phase is needed for such a transition to occur.

A third possibility is that in this experiment the cue independence assumption was

violated after sufficient practice in the form of new, chunked dual cue representa-

tions, somehow leading to the differentially greater speed up for dual cue items. Al-

though this account also does not directly predict the greater dual cue facilitation in

this experiment than in the first experiment, it would be natural to assume that a

chunking mechanism has enhanced impact on performance when the spatial cue or-

dering is constant for each dual cue item.
The transfer phase allowed us to discriminate among these possibilities. Accord-

ing to both the automatized parallel retrieval and the decreasing capacity demand
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accounts, spatial reversal of dual cue items at transfer should have no effect on RT,

provided that spatial reversal of the single cue items has no effect on RT (i.e., pro-

vided that single cue learning during the test did not code spatial location of the cues

relative to the preceding fixation asterisk, or to any other spatial reference point).

According to the chunking account, on the other hand, reversing the cue ordering
at transfer should disrupt performance, provided only that the chunked dual cue rep-

resentations that formed during test were specific to spatial cue ordering.

The transfer test had six conditions: left old, right old, left reversed, right reversed,

dual old, dual reversed. Here, the terms ‘‘left’’ and ‘‘right’’ refer to the spatial loca-

tion of the cue (left or right of the fixation point) during the test phase. Old items

were identical to items seen during test. ‘‘Left reversed’’ refers to single cues pre-

sented on the left side of fixation during the test but on the right of fixation during

the transfer, and ‘‘right reversed’’ refers to the opposite. Reversed dual cue items
were the same as old dual cue items, with the exception that the cues were left-to-

right reversed.

The results, collapsed across the three transfer blocks, are shown in Fig. 4. These

data were analyzed by a within subjects ANOVA with a six level factor of Condition.

Four single degree of freedom contrasts were performed. First, it is immediately ap-

parent that reversal of cues on dual cue trials had a marked impact on performance.

Reversed dual cue items were 118ms slower than old dual cue items,

F ð1; 17Þ ¼ 16:31, p < :001, and 40 slower than even the RS prediction for the trans-
fer test, F ð1; 75Þ ¼ 2:94, p ¼ :090. However, a contrast comparing old to reversed

single cue trials (collapsed over the left, right distinction) was not significant,

F ð1; 75Þ < 1:0. Evidently, location of a cue relative to the preceding fixation asterisk

was not coded as part of the single cue representation. These results rule out both the
Fig. 4. Mean RTs for each of the transfer conditions in Experiment 2, collapsed over the three transfer

blocks.



264 T.C. Rickard, D. Bajic / Cognitive Psychology 48 (2004) 243–294
automatized parallel retrieval and the decreasing capacity demand hypotheses. In-

stead, they suggest a chunking account in which access to the dual cue representa-

tion—for purposes of retrieval at least—is possible only when the cues are

presented in the previously learned spatial order.

A second notable transfer effect is that left-old and left-reversed single cue
items were performed faster than right-old and right-reversed single cue items,

F ð1; 75Þ ¼ 15:42, p < :001. Because cue location was counter-balanced across sub-

jects, this result cannot be attributed to differences in intrinsic retrieval difficulty

of left- vs. right-side cues. Also, as noted above, spatial location relative to fixa-

tion was not coded into the single cue representations during the test. It thus ap-

pears that the RT advantage for single cue items that were always presented on

the left during test is solely a result of a preference for retrieval through those

cues on dual cue trials. If some subjects adopted this simplifying strategy, the
left-side cue would get twice the retrieval practice of its companion (once as a

single cue and once in its dual cue form within each test block), leading in turn

to faster RTs for that cue on single cue trials. To explore this possibility, we com-

pared the means for single cue items presented on the left during the test to those

presented on the right. This analysis was restricted to test blocks 10–20, on which

dual cue performance was stable relative to the model predictions. The left-side

single cue items had a mean RT of 950ms, 64ms faster than the mean RT for

right-side items. This effect size is in the same range as the 82ms difference be-
tween left-old and left-reversed vs. right-old and right-reversed single cue items

on the transfer test. This effect was reversed (but not significantly so) toward

the beginning of test, suggesting that the left-side bias developed as a consequence

of learning over test blocks. It appears that subjects did preferentially retrieve

through the left-side cue on dual cue trials.

Note that within the cue selection framework, it would be natural for subjects

to discover a simplifying selection strategy when possible during initial practice

blocks. The retrieval architecture requires them to select only one cue for retrieval
on dual cue trials. If they cannot always choose a cue efficiently at the item level,

then a strategy of cue selection based on a category distinction (i.e., left vs. right

side) is as good as any. On the other hand, according to the race model, the cue

selection problem does not exist. Strategic retrieval through the left-side cue could

only hurt performance, because it would not capitalize on the facilitation effect

that results from a race. In the LC model, preferential retrieval through one

cue could lead to optimal performance under conditions in which the capacity

limitation more than cancels out the statistical facilitation due to parallel re-
trieval. However, placement of capacity allocation under strategic control compli-

cates parallel models, and vastly increases their flexibility. We will return to this

issue in Section 9.

Despite its substantial impact on performance, the left-side retrieval bias alone

cannot explain the dual cue facilitation during test in this experiment. By the end

of the test, the ES prediction was below the left-side cue RTs, and the dual cue

RTs were significantly below the ES prediction. A dual cue chunking account is

needed to fully explain these results.
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5.2.1. Candidate chunking accounts

First consider the cue selection class of models. One plausible chunking account,

an elaboration on the CMPL architecture (Rickard, 1997), is depicted in Fig. 5. Prior

to dual cue practice (Panel a), the associative pathways from the two cues to the re-

sponse are separate and independent, and there is no dual cue representation. After
dual cue practice, a chunked dual cue representation might develop at the perceptual

level (Panel b).6 Note that although CMPL limits activation flow from the set-cue

level forward, it places no constraints on the number of representations that can

be active at earlier stages of processing, nor on the number of input nodes that

can send activation in parallel to a given set-cue node.

We also assume that subjects are always retrieving the response through the more

efficient cue of each pair by the time a stable dual cue chunk begins developing.7 Ac-

cording to this chunking model, the dual cue chunk becomes directly associated with
the pre-existing set-cue conjunction node of the efficient cue (M in the figure) as an

automatic consequence of dual cue item repetition (Panel b). This account fits nat-

urally within the CMPL framework. A new set-cue conjunction node is not needed

to support the chunking effect, because a stable associative pathway to the required

response already exists via the set-cue conjunction node for the efficient cue. On each

dual cue trial, that set-cue conjunction node is activated by the efficient cue, and an

association develops between it and the concurrently activated chunk. Once that as-

sociation has formed, activation from both the efficient cue and the dual cue chunk
may pass in parallel to the corresponding set-cue node.

There is insufficient information at present to justify any specific claims regarding

how a newly associated dual cue chunk might facilitate retrieval through the efficient
6 We will not address the issue of how the dual and single cue representations might be connected, if at

all, at the perceptual level. We simply assume that the dual cue chunk can be approximately modeled, with

respect to its effect on performance, as a third cue at the perceptual level. Since the data compel a chunking

interpretation, some third neural representation, connectivity, or activation pattern must exist that is not

engaged when the cues are presented alone (i.e., something new at a neural level must be generating the

chunked facilitation effect). Considered at this most abstract level, it is this aspect of the representation

that is hypothesized to become associated with the set-cue node for the efficient cue.
7 In Section 9 we consider factors that justify this assumption.
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set-cue node, but there are numerous plausible and non-exclusive possibilities, in-

cluding a facilitated rate of activation of the set-cue node, an increased maximum

activation level of the set-cue node, and a strengthened association from the set-

cue node to the response that is fully tapped only when the dual cue is present. In

all cases, the rate of activation at the response level could be facilitated on dual trials,
even though response activation is still occurring through only one set-cue node.

The facilitation effect due to chunking can reasonably be assumed to be propor-

tional to the efficient cue RTs over all dual cue items for a given subject. Thus, the

simplest approach to implementing this model mathematically is analogous to that

used for the limited capacity model; the RT for the efficient cue of each cue pair is

simply multiplied by a coefficient, j, whose value in this case is less than 1.0. The

mean RT prediction of this model, which we will term the efficient selection plus

chunking (ES+C) model, is:
lD ¼ j �minðl1; l2Þ þ lDp: ð5Þ
As was the case for the parameter c in the limited capacity model, the fit of this

model was optimized in the RT distribution analyses by finding the value of j that
minimized the sum of the absolute differences between the actual and predicted dual

cue quantiles.

Chunked dual cue representations can be incorporated into parallel models as

well, though the implementation is not quite as straightforward. One natural account

would be that an independent dual cue chunk forms with practice and becomes a

third racer when a dual cue item is presented. However, from the parallel retrieval
perspective, capacity appears to already be taxed by two cues, resulting in perfor-

mance at or above the ES level when the cues can be considered independent. Since

the independent chunk would form later than the single cue associations, it would

presumably be a weak racer, rarely winning but taking significant capacity from

the single cue racers. A third racer under these conditions would most likely hurt

rather than facilitate performance.

Alternatively, an approach analogous to that used for the ES+C account could

be adopted. The dual cue chunk could somehow become part of the retrieval path-
way for one or both of the single cues, facilitating retrieval through those pathways.

Only two racers would be present on dual cue trials, eliminating the deficiency of the

account outlined above. Such a chunking mechanism could be added to the LC mod-

el just as for the ES+C model, by multiplying the single cue retrieval RT by a coef-

ficient of less than 1.0. However, within a limited capacity framework, one would not

expect a chunked association to develop only for the more efficient cue of each pair,

because so long as the RT distributions overlap, either cue can deliver the response

first on any given trial throughout the test blocks. Rather, the dual cue chunk would
become associated with each cue–response pathway in proportion to the frequency

with which that cue wins the race on dual cue trials. This proportion is not knowable

directly but can be approximated by tallying the proportion of blocks on which a cue

yields a faster RT than its companion cue on single cue trials. The idea here is that

the faster cue as indexed by single cue performance is more likely to win the race on

dual cue trials.
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We developed a simplest case quantitative model based on the second account

above by computing, for one cue of each cue pair, the proportion of test blocks

on which the RT for that cue (a single data point in each block) was faster than that

of its companion cue. The result was a weighting variable, w, for estimated the

chunking effect for that cue on dual cue trials. For a given cue pair, w will refer to
the weighting factor for one cue (cue 1), and (1� w) to the weighting factor for its

companion (cue 2). The overall chunking facilitation effect for a given cue pair

was given by the free parameter, k.8 The dual cue RT facilitation coefficients for each

cue pair were then computed as:
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k1 ¼ 1� wð1� kÞ; ð6Þ

k2 ¼ 1� ð1� wÞð1� kÞ: ð7Þ

If, for example, the overall chunking parameter, k, is set at .9 (implying a 10% overall

facilitation effect), w is .4, and 1� w is .6, then the facilitation coefficient for cue 1 is

1� :4ð1� :9Þ ¼ :96, and that for cue 2 is 1� :6ð1� :9Þ ¼ :94.
This limited capacity plus chunking (LC+C) model predicts that:
lD ¼ l½minðk1�c�RT1; k2�c�RT2Þ�: ð8Þ
For the ES+C and LC+C models to provide complete accounts of dual cue

practice effects, functions would be needed that describe how j (the chunking param-

eter for the ES+C model) and k, respectively, change with practice. However, given

the ease with which decreases in retrieval RTs with practice are usually fit with rel-

atively simple practice functions, there is little reason to believe that these models

could be discriminated along those lines. Further, in our view it is of more value

to first determine whether either model can fit the RT distributions under roughly

‘‘steady-state’’ conditions after sufficient practice (i.e., under conditions in which
there is minimal block-to-block speed-up, so that practice effects can be ignored).9

If either model cannot fit those data, there is little reason to develop it further.

Hence, in this paper the candidate chunking models will be evaluated only for the

approximate steady-state case, which corresponds to roughly the second half of

the test in all experiments. Finally, because these models, like the LC model, could

fit the mean arbitrarily, they will be evaluated only for the RT cumulative distribu-

tion fits.
he method for estimating the predictions of both the ES+C and the LC+C models reduces not just

rieval component of the RT distribution, as desired, but also the perceptual and motor components

e distributions. However, for the ES+C model, the parameter j typically took values of around .95.

this small magnitude transformation, these factors would have little if any measurable impact on

ution shape. For the LC+C model, the values of the parameter, k, were often much smaller.

er, the deflation of the RT distribution caused by this parameter partially reverses the inflation for

e brought about by the transformation through the parameter, c. In any case, given the similarity in

pes of the race, LC, and LC+C models, it is clear that this potential bias is not a factor in the

of the fits.

y steady-state, we do not imply asymptotic, but rather an interval of blocks over which the sample

anged minimally, if at all, and thus over which the cognitive processes can be assumed to be stable.
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5.2.2. Cumulative distribution fits

As for Experiment 1, the distribution fits generally mirrored the results for the

means (see Fig. 6). Over the first six test blocks (Panel a), the ES model provided

the best fit (nil; 43). The RS model significantly over-predicted dual RTs (1–6,

284) and the race model under-predicted them (1–6, 161). The LC model faired bet-
ter, but was rejected on the first and sixth quantiles (1, 6; 85; c ¼ 1:11).

On the last 10 test blocks (Panel b), the RS (1–6, 114) and ES (1–5; 53) models

over-predicted dual cue RTs, whereas the race model under-predicted them
Fig. 6. Model fits to the cumulative RT distributions for dual cue items in Experiment 2. Data in Panel a

are averaged over the first six blocks of the test and in Panel b they are averaged over the last 10 test

blocks.
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(4–6; 54). The LC+C model fit reasonably well but again under-predicted the skew

(6, 42, k ¼ :81). The fit of the ES+C model, however, was nearly exact (nil; 9.5;

j ¼ :95). The fit of the LC model (not shown), was substantially above and worse

than that of the LC+C model, just as for the end of practice in Experiment 1.

The overall results are again more consistent with the cue selection class of mod-
els. The fact that the one parameter ES+C model fit the steady-state distribution

data so well even when the means were well below the ES prediction suggests that

a single associative pathway, perhaps mediated by a single set-cue conjunction node,

may in fact continue to govern performance indefinitely. Of course, only moderate

levels of practice were given in these experiments. The question of whether the

ES+C model would describe the dual cue RTs after extended practice remains to

be addressed. To our knowledge, however, there is no evidence in the literature that

processes underlying retrieval performance change fundamentally after the rate of
speed up with practice has already become so small (but see Schumacher et al.,

2001, for evidence that RT interference decreases markedly after practice on a dual

choice RT task).
6. Experiment 3

In Experiments 3–5, dual cue items consisted of one letter and one color cue in-
stead of two letter cues. Use of these two cue dimensions has a number of useful con-

sequences. First, there is strong evidence that letter and color stimuli can be

perceived in parallel with essentially no processing delay (Mordoff & Yantis, 1993;

More & Osman, 1993), eliminating this factor as a nuisance variable. As such, no

perceptual correction was applied to the model predictions derived from the single

cue data (i.e., lDp was assumed to be zero). Second, it is possible that, whereas

two cues from the same category cannot be used in parallel for retrieval, two cues

from different categories, such as letters and colors, can be. Third, in the current ex-
periment and in Experiment 5, dual cue items took the form of colored letters. This

design allowed us to explore whether spatially integrated cue dimensions might yield

parallel retrieval from the outset of practice. Finally, use of color and letter cues

brings these experiments somewhat closer to the congruent condition in the Stroop

task. It may be of interest to compare results from these two related paradigms.

6.1. Method

6.1.1. Subjects

Twenty University of California at San Diego undergraduate students partici-

pated: 13 for course credit, and 7 for a financial reward.

6.1.2. Materials, design, and procedure

The single cue stimuli consisted of seven single letters (presented in light grey on a

black background) and seven colored X�s. The dual cue stimuli were colored letters.

For each stimulus triplet (i.e., a colored X, a letter, and the corresponding colored
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letter), total luminosity, number of activated pixels, and the rectangular space cov-

ered, were equated.

The single-cue learning phase of this experiment was divided into two subsections:

one for the letter stimuli, and the other for the color stimuli. The order in which these

two subsections were presented was counterbalanced. Within each subsection, the
structure closely matched the learning phase from Experiment 1: i.e., study blocks

(three mandatory; one optional) followed by single-cue performance-blocks (with

each appropriate stimulus presented once per block). The first subsection concluded

when the subject completed two consecutive performance blocks with 100% accu-

racy, and a mean RT of 1000ms or less on the last block. For the second subsection,

there was the added requirement that the mean RT on the last block could be no

higher than that from the final block of the preceding subsection. This procedure

helped match the RTs for color and letter cues. These learning criteria were slightly
more stringent than those of the earlier experiments, and were included in an effort to

increase accuracy during the test phase.

Next, each subject received one mixed single cue block. This block was structured

like a block from the testing phase, except that no dual cue stimuli were presented.

Each letter and color stimulus was presented once in this block, mixed randomly.

This block was included to refresh subjects� memory for the items learned during

the first learning phase and to familiarize them with presentation of both cue cate-

gories in a mixed fashion.
At the start of the test phase, subjects were informed that some of the following

trials would involve letter cues, some would involve color cues, and some would in-

volve colored letter cues. Subjects were explicitly told that, whenever a colored letter

was presented, the color and letter would always correspond to the same digit

(learned previously), and that this digit would be the appropriate answer. To ensure

that each subject understood this, all subjects were required to summarize the in-

structions in their own words.

In the testing phase, the basic format from the earlier experiments was used; how-
ever, the message ‘‘Get Ready!’’ was replaced with an asterisk fixation point which

flashed twice in the center of the screen. Each stimulus appeared in the exact location

of the preceding fixation point. Each testing block consisted of 21 trials, with each

color, letter, and colored letter stimulus presented once, in random order. A total

of 20 test blocks were presented.

6.2. Results and discussion

Fig. 7 shows the mean dual cue RTs, along with predictions of the RS, ES, and

race models. On the first test block, mean dual cue RTs were again above the RS

prediction, but fell below it on the second test block, and converged with the predic-

tion of the race model by the last test block. The interactions between Fit and Block

evident in the figure were confirmed by ANOVAs: the F (19, 361) values were 2.38,

4.2, and 5.37, for the RS, ES, and race models, respectively (all p�s<.001).
The cumulative distribution fits are shown in Fig. 8. On the first test block (Panel

a) the RS model prediction was not significantly different from the dual cue RTs on
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the RS, ES, and race models.
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any quantile (nil; 67). The ES (2–6, 165) and race (1–7, 289) models dramatically un-
der-predicted the RTs. The fit of the LC model was also relatively poor (1–3, 7; 132;

c ¼ 1:29). On the last 13 test blocks (Panel b) the RS (1–7; 113) and ES (1–6 ; 40)

models both over-predicted the dual cue RTs. The race (7; 26) and LC+C (7; 26;

k ¼ :56) faired better. The fit of the ES+C model was again excellent (nil; 7,

j ¼ :945).
It appears that even in the case of mixed color and letter cues, subjects must select

and retrieve from only one cue when the cues are independent. With practice, the

dual RTs decreased quickly, nearly matching the race prediction (with respect to
the means) by the end of practice. Nevertheless, the dual cue RT distribution was still

best fit by the ES+C model. This finding lends additional support to our hypothesis

that a single set-cue conjunction node continues to mediate performance after dual

cue practice, even when dual cue chunking has occurred and clear RT facilitation

is present. It is important to note, however, that in this case the best fitting cue se-

lection model has one free parameter, whereas the best fitting parallel model, the race

model, has none.

From the perspective of the parallel retrieval framework, the accelerated rate of
dual cue speed-up, and the convergence of the dual cue mean on the race prediction,

raise the possibility that either the automatized parallel retrieval or the decreasing

capacity demand hypotheses, which were ruled out for the case of two letter cues,

might nevertheless hold for the case of mixed color and letter cues. Color and letter

cues may be stored and processed in different neural networks, perhaps reducing in-

terference on dual cue trials. Alternatively, since the letter and color cues are inte-

grated in this experiment, conditions may also be optimal for dual cue chunking.



Fig. 8. Model fits to the cumulative RT distribution for dual cue items in Experiment 3. Data in Panel a

are for the first block of the test and in Panel b averaged over the last 13 test blocks.

272 T.C. Rickard, D. Bajic / Cognitive Psychology 48 (2004) 243–294
It may be much easier for the memory system to encode a colored letter as a single

object than to encode two letters (or a color and a letter) presented side by side as a

single object. In Experiment 4, we tested these accounts by spatially reversing the

ordering of the dual cue dimensions from block-to-block.
7. Experiment 4

This experiment was designed to be as similar as possible to that of Experiment 3,

while incorporating the side-by-side, block-to-block reversed, dual cue format of
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Experiment 1. Since chunking in this case should be more difficult than in Experi-

ment 3, the cue selection account predicts that dual cue RTs will be above the ES

prediction for significantly more practice blocks than in that experiment. On the

other hand, the automatized parallel retrieval account does not depend on dual

cue chunking to predict an onset of dual cue facilitation with practice, and thus pre-
dicts that dual cue performance will be analogous to that observed in Experiment 3.

7.1. Method

7.1.1. Subjects

Twenty-one University of California at San Diego undergraduate students partic-

ipated for course credit.

7.1.2. Materials, design, and procedure

The experimental design closely matched that of Experiment 3, with the following

exceptions. First, there were six, rather than seven, items in each stimulus category.

Second, each single color cue was presented in the form of a 3mm� 5mm rectangu-

lar patch instead of an X. Dual cue stimuli consisted of a letter and a color patch

presented side-by-side. As in Experiment 3, members of each stimulus triplet were

equated for total luminosity, number of activated pixels, and rectangular area cov-

ered. As in Experiment 1, single color and letter cues were left–right reversed from
block-to-block with respect to fixation, and the two cues of each dual cue item were

also left–right reversed from block-to-block. There were 20 test blocks.

7.2. Results and discussion

Fig. 9 shows the dual cue RTs, along with predictions of the RS, ES, and race

models. Dual cue RTs on the first four test blocks were again above the RS predic-

tion. With practice they gradually fell below it, roughly converging on the ES predic-
tion by the end of practice. ANOVAs again revealed significant interactions between

Fit and Block for all models: The F ð23; 460Þ values were 2.38, 2.4, and 3.56 for the

RS, ES, and race models, respectively (all p�s<.001).
Cumulative distribution fits are depicted in Fig. 10. On the first three test blocks

(Panel a), the RS model provided the best fit (nil; 62), whereas the ES (1–6, 177) and

the race models (1–6, 257) under-predicted RTs. The fit of the LC model was better,

but still poor on the distribution tails (1, 2, 6; 166; c ¼ 1:24). On the last 10 test

blocks (Panel a) the RS model over-predicted (3–6; 101) and the race model un-
der-predicted (1–6; 94.5) dual cue RTs. However, the fit of the ES model (nil; 12)

was once again quite good. The LC+C model was somewhat competitive in this case

(6; 45, k ¼ :74), but exhibited the under-estimation of skew that has been character-

istic of all of the parallel model fits.

These results mirror those of Experiment 1. It appears that spatial reversal of cues

from block-to-block severely disrupts chunking for not only dual letter cues, but also

for letter and color cues. These results speak against both the automatized parallel

retrieval and the decreasing capacity demand account of practice in Experiment 3.



Fig. 9. Mean dual cue RTs for Experiment 4 as a function of test block, plotted against the predictions of

the RS, ES, and race models
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When chunking is not possible, or is at least substantially delayed, performance over

test blocks is well captured as a straightforward transition from random, or at least

inefficient, cue selection, to efficient cue selection.

The good fit of the ES model to the steady-state data when cue order is reversed

from block-to-block (Experiments 1 and 4) raises a potentially serious question that

must be addressed in any future modeling efforts within the parallel framework. If

dual cue performance reflects limited capacity parallel cue processing, then the zero

free parameter ES prediction is arbitrary, having no more significance than any other
random function. Why, then, would the dual cue data conform so well to the ES pre-

diction for the case of steady-state performance? The same question is raised regard-

ing the one parameter ES+C model fits to steady-state data in Experiments 2 and 3.
8. Experiment 5

Despite our earlier arguments to the contrary, it is still conceivable that the slow
dual cue performance on the first few test blocks in Experiment 3 reflects some un-

specified novelty effect that was unique to the dual cue items. Perhaps parallel re-

trieval from independent cues is possible only when each of the following

conditions is met: (1) each cue is from a different category, (2) the cues are two di-

mensions of a single object, (3) single cue performance has been sufficiently automa-

tized, and (4) any possible dual task novelty effects at the beginning of test have been

eliminated. This experiment tests this possibility. The basic design is similar to that

of Experiment 3, with the following exceptions. First, in this case eight letter and



Fig. 10. Model fits to the cumulative RT distribution for dual cue items in Experiment 4. Data in Panel a

are averaged over the first three blocks of the test and in Panel b over the last 10 test blocks.
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eight color cues were associated with only four responses (one response for each

stimulus pair in each cue category) during training. Note that this design results in

two non-overlapping sets of dual cue pairings for each response. For example, con-

sider a case in which two letter cues, A and B, and two color patch cues, Red and

Green were all associated with the response ‘‘3’’ during single-cue learning. One pos-

sible set of dual cue pairings is (A, Red) and (B, Green). A second set of dual cue

pairings is (A, Green) and (B, Red). During test, all single cues, but only one set
of dual cue pairings for each response was presented, yielding a total of 24 items

per test block. Drawing on the example above, subjects would see A, B, Red, Green,

(A, Red), and (B, Green), all having the same response, ‘‘3.’’ Second, the test phase

in this experiment was followed by a transfer phase. The transfer phase was identical



276 T.C. Rickard, D. Bajic / Cognitive Psychology 48 (2004) 243–294
to the test phase, with the exception that here the dual cue items from test were re-

placed with the second set of dual cue items. In the example, (A, Red) and (B, Green)

were removed from the stimulus set above and replaced with (A, Green) and (B,

Red). There were still 24 items per block in the transfer phase. As in Experiment

3, dual cues were dimensions of a single object (i.e., a colored letter). However,
the single color cues were presented as rectangular color patches, as in Experiment 4.

We expected the results of the test to be similar to those observed in Experiment 3.

The transfer phase provided the critical test of the models. On the first transfer block,

subjects were already familiar with performing dual cue trials, and had already re-

ceived considerable practice with all the individual cues. Subjects were also highly

familiar with the task requirements and with the experimental context and flow.

The cues of each dual cue item, however, had not been seen together before, so

any dual cue chunking that may have occurred during the test phase was completely
eliminated. This manipulation cuts to the heart of the models. Any cue selection

model must predict that dual cue RTs will be at or above the ES boundary on the

first block of the transfer phase across the entire distribution, regardless of the level

of dual cue performance during test. The automatized and decreasing capacity de-

mand parallel models, on the other hand, predict that cue recombination in phase

two will have no effect on dual cue performance.
8.1. Method

8.1.1. Subjects

Sixteen University of California at San Diego undergraduate students partici-

pated for course credit.
8.1.2. Materials, design, and procedure

The design and procedure were similar to those of Experiment 4, with a few ex-

ceptions. As noted above, two color and two letter stimuli were associated with each
of four digit responses (4–7) during the learning phase. The dual cue items were col-

ored letters. There was a 10 block test phase followed by a 20 block transfer phase.

Crucially, the cue members of new dual cue stimuli that were presented in the trans-

fer phase had never been seen together before, and thus are independent. The onset

of the transfer phase occurred without notification to the subject. Indeed, only one

subject reported even noticing the recombination of the dual cue stimuli in a post-

experimental interview. Subjects were given a brief rest before the start of the first

test phase, and also after the 8th, 16th, and 24th blocks of testing.
8.2. Results and discussion

The RT results are plotted in Fig. 11. The vertical dotted line demarks the tran-

sition from the test phase to the transfer phase. The pattern for the test phase is fa-

miliar. Dual cue RTs were initially above the RS prediction, but decreased quickly

on a trajectory toward RTs that are faster than the efficient selection prediction.
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the RS, ES, and race models.
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The interactions between Fit and Block were all significant: The F ð15; 135Þ values

were 5.42, 5.03, and 6.44 for the RS, ES, and race models, respectively (all p�s<.001).
Crucially, dual cue RTs were once again above the ES and RS prediction on the

first block of the transfer phase. Paired t tests were performed comparing the dual
cue and ES means on blocks 10 (the last test block) and 11 (the first transfer block).

On block 10, the 3ms difference was not significant, tð15Þ ¼ �:025. However, on

block 11, the difference was substantial (109ms) and significant, tð15Þ ¼ 2:4,
p ¼ :029. As usual, dual cue RTs decreased substantially over the course of the trans-

fer blocks. The interactions between Fit and Block were significant for all models:

The F ð19; 285Þ values were 2.44, 2.2, and 2.39, respectively, for the RS, ES, and race

models (all p�s<.01).
Cumulative distribution fits are shown in Fig. 12. On the first three test blocks

(Panel a), the RS model provided the best fit (4, 5; 90), whereas both the ES (2–7;

155), and the race models (1–8, 282) consistently under-predicted RTs. The LC mod-

el fit was better than the race fit (1–3, 8; 142; c ¼ 1:25), but again lagged that of the

zero free parameter RS model. On block 11 (Panel a), the first block of the transfer

phase, the RS model again provided the best fit (4, 5; 40). The ES model fit the lower

quantiles well, but under-predicted the upper three quantiles (5, 6, 7; 100), and the

race model under-predicted all quantiles (1–8; 163). The LC model also fit poorly

(1–4; 109).10 On the last 10 blocks of the transfer phase (Panel c), the RS model
over-predicted almost all quantiles (1–7; 66), the ES model faired well but still
10 The fit was not improved materially by allowing c to vary as a free parameter.



Fig. 12. Model fits to the cumulative RT distribution for dual cue items in Experiment 5. Data in Panel a

are averaged over the first three test blocks, in Panel b for the first transfer block, and in Panel c are

averaged over the last 10 blocks of the transfer phase.
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over-predicted two of the low quantiles (2, 4; 10), and the race model under-pre-

dicted almost all quantiles (1, 3–8; 50). The LC+C fit was rejected on five quantiles

(2–4, 7, 8; 39; k ¼ :65). In this case the ES+C model could not improve on the ES fit

in terms of mean absolute deviation, but it did eliminate the significant quantiles (nil;

9; j ¼ :99; not shown in Fig. 12).
These results provide strong converging evidence for the cue selection class of

models. Even when (a) general task level learning is eliminated at transfer, (b) cues

are a color and a letter, and (c) the cues are merely different properties of a single

object, two independent cues render no RT advantage over one cue.
9. General discussion

Our primary long-term goal in this line of investigation is to distinguish between

two broad and theoretically pivotal classes of real time retrieval models under con-

ditions of cue independence; the data so far support the cue selection class over the

parallel class. The lower bound RT prediction for any member of the cue selection

class is the ES prediction, which corresponds to the expected retrieval latency for

the faster, or more efficient, cue. In contrast, parallel models as a class can predict

dual cue facilitation below that level. Among the seven distribution fits at the begin-

ning of a new test phase, involving 35 quantiles, there was no case in which the dual
cue latency fell below the ES prediction. Indeed, dual cue RTs were substantially

above it—in the range of the RS prediction—the majority of the time. This result

was quite unexpected based on most of the literature reviewed in Section 1.

Though there was clearly no violation of the ES lower bound RT prediction at the

group-level on the first few test blocks, there may still be individual differences in per-

formance, such that RTs for some subjects violated the ES boundary condition. We

investigated this possibility for the RT data from the beginning of test in Experi-

ments 1, 4, and 5. In those cases there were sufficient numbers of blocks that passed
the criterion for inclusion in the distribution analyses to perform subject level anal-

yses. For each analysis, a difference score was obtained comparing the dual cue RT

to the ES prediction (dual-ES) for each dual cue item on each test block for each sub-

ject. For example, the first three test blocks were included in this analysis for the be-

ginning of test in Experiment 1. For each subject, there were six difference scores for

each test block, and three blocks, yielding a total of 18 difference scores. Separately

for each subject, these difference scores were analyzed using a one-sample t test.

Across all three experiments, there were no subjects whose dual cue RTs fell signif-
icantly below the ES prediction. The group-level results appear to hold consistently

at the subject-level.

It is important to acknowledge the possibility that subjects choose not to retrieve

in parallel during the first few test blocks, even though in principle they could have.

But for now that account is at best incomplete, because there is no obvious reason

why subjects would have chosen such a strategy. One might argue that the cognitive

system ‘‘prefers’’ to retrieve through one cue at a time, perhaps because capacity lim-

itations on parallel retrieval are severe, but such an account has limited appeal unless
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there is some underlying principle from which one can predict a priori whether or not

facilitation will be observed. The associative independence principle, in concert with

the cue selection class of models, satisfies that condition.

The evidence favoring the cue selection class of models is just as strong for the

second half of the test in each experiment, when roughly steady-state performance
had been achieved. During the second half of the test in Experiments 1 and 4, per-

formance on dual cue items exhibited a striking convergence with the zero-parameter

ES prediction. In Experiments 2, 3, and 5, in which cues were not spatially alternated

during test, dual cue RTs fell significantly below the ES boundary over the course of

test and transfer. However, the ES+C model, which incorporates the simplest pos-

sible chunking account within the cue selection framework, uniquely fits those data

quite well, with no evidence of systematic error in any case. It is a bit of a misnomer

to refer to the ES+C model as a cue selection model, since it assumes that both a
single cue and a dual cue chunk can participate in parallel in retrieval. However,

the more central point is that this model can account for performance while preserv-

ing the assumption of a retrieval bottleneck at the set-cue level. The ES+C model is

a member of the ‘‘set-cue’’ selection class of models.

In contrast, all of the parallel models were rejected on multiple distribution quan-

tiles in nearly all cases. As we noted already, the ES and ES+C predictions are ar-

bitrary from the perspective of parallel retrieval models, and they have zero and one

free parameter, respectively. It therefore seems quite unlikely that dual cue perfor-
mance would match the predictions of those models so well if retrieval was occurring

in parallel from both cues, be it capacity limited or not.

9.1. Toward an integrated cue selection account

Because random selection is the most viable account of initial dual cue perfor-

mance among the models considered, it is important to consider how the apparent

transition to efficient cue selection might have taken place with dual cue practice.
The simplest account rests on the assumption that subjects begin to systematically

select one of the cues for each dual cue item within the first few test blocks. Cue se-

lection might become systematic, for example, if subjects randomly chose a cue on

the first exposure to a dual cue item, strengthening that cue�s associative pathway,

and in turn increasing the likelihood that that cue would be selected on the next test

block, etc. Alternatively, as in Experiment 2, some subjects may have chosen cues

based on cue category (e.g., left- or right-side). In either case, the result, for most

cue pairs, would be the onset of systematic retrieval through one of the cues within
the first few practice blocks. The preferred cue of each pair would then receive twice

the retrieval practice of its companion cue (once on its single cue trial and once on its

dual cue trial on each block). Since retrieval practice is a primary determinant of re-

trieval speed, it seems inevitable that dual performance would transition to roughly

the efficient selection level with sufficient practice. This may simply be an automatic

consequence of performance.

The excellent fits of the ES+C model to the steady-state data in Experiments 2

and 3 further suggest a two-stage transition process with practice. The first stage
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is from roughly random to efficient cue selection, and the second stage is from effi-

cient selection to chunked efficient selection, provided that chunking is possible in

the task. This general framework has the potential to account for virtually all of

the RT patterns in the five experiments.

9.2. Limited capacity retrieval models

The LC model only modestly improved the distribution fits over the race model.

Its primary limitation was under-prediction of the skew on the upper tails of the RT

distributions. Even for the second half of the test in Experiment 3, on which mean

dual cue RTs were quite close to the race model prediction, the under-prediction

of skew by the race and LC+C models was clear. In contrast, ES and ES+C models

fit the upper tail of the dual cue RT distributions for data from the second half of the
test quite well in all experiments. As such, the failure of the parallel models to fit

those data cannot easily be dismissed as reflecting outlier effects in the dual cue data

drawn from different populations than assumed by those models (i.e., possibilities

such as subjects being confused or hyperconservative on some dual cue trials, etc).

Such events may well occur sometimes on the first few test blocks, but would not

be expected toward the end of test. One certainly would not expect such factors to

result in variance and skew that repeatedly matched the predictions of the RS, ES

or ES+C models.
Nevertheless, there are several candidate elaborations of the LC model that might

provide better fits to the data from the beginning of the test. One could assume that,

instead of retrieval being self-terminating, it is exhaustive on some trials (i.e., both

retrievals are completed before a response is executed). This mixture of self-terminat-

ing and exhaustive trials might generate the increased skew needed to fit the data

from the beginning of the test phases, because RTs on exhaustive trials would be

equal to or slower than those of the inefficient cue of each cue pair. However, sub-

jects were instructed to optimize performance in the current experiments, so it seems
counter-intuitive that they would adopt this strategy. Another approach to increas-

ing the skew in the LC fits would be to use a non-linear transformation function to

convert single cue RTs into predicted dual cue RTs. Again, however, in neither of

these scenarios would one expect dual cue RTs to match the ES and ES+C predic-

tions so well during roughly the second half of the test in all five experiments.

A third approach would be to construct a parallel model in which the processes

and predictions of the cue selection models constitute special cases. Introduction

of a strategic capacity allocation process could accomplish this goal. When all
needed capacity is always allocated to the more efficient cue of each pair, the RT pre-

dictions could approximate those of the ES model. In fact, if there is just enough ca-

pacity for one retrieval, or if retrieval through the inefficient cue can be actively

inhibited, then such a model is isomorphic with the ES account. If, on the other

hand, all available capacity is allocated to one cue on each trial, and that allocation

is randomly determined, the LC model would be isomorphic with the RS model. Gi-

ven the fit quality of the highly constrained cue selection models, however, there

is for now little reason to consider this more flexible class of parallel model. For a
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parallel model to be preferred on scientific grounds, it should not only provide an

equally good account of the current data with a comparable number of free param-

eters, but must also make a correct prediction that cannot be accommodated within

the cue selection framework.

9.3. Comments on parameter-free modeling

The parameter free (or parameter minimizing for the ES+C, LC, and LC+C

models) approach used in this paper has some important advantages, along with

some disadvantages, in comparison to the more traditional parameterized modeling

approach. The relative value of these approaches may well depend crucially on con-

text. In the current case, the task domain lends itself to models with few or no pa-

rameters that capture theoretically important issues at a quite general level.
Hence, they facilitate evaluation not just of specific process models but also entire

classes of models. The ES prediction, for example, establishes a theoretically crucial

lower bound performance level for cue selection models as a class.

In the alternative approach of full parametric modeling, both the single and dual

cue data must be modeled, without use of the single cue data as a constraint. As such,

one must be concerned not only with the quality of the fit to the dual cue data, but

also with the quality of fit to the single cue data. If one�s goal is more ambitious than

ours here, and includes modeling of the properties of both single and dual retrieval,
then a fully parameterized model may be best suited. However, our current interest is

restricted to the question of how concurrent access to memory from two cues might be

limited. Hence, use of single cue data as a known quantity (having only random error

in its sample means), and building of theoretical predictions based on that known

quantity, is a potentially much more efficient and powerful approach. Any systemic

problems with such a model�s fit must be attributed to the inability of that model

to account for the manner in which the brain manages dual cue retrieval.

An example of the inferential power provided by our approach is the RT distri-
bution fitting. It is well documented that quite large amounts of data are needed be-

fore an empirical distribution will faithfully represent its underlying population

function and parameter values (e.g., Van Zandt, 2001). In any fully parametric mod-

el this fact must be heeded, making it difficult in many cases to conclusively test a

theoretical distribution form. Our approach, in contrast, is completely non-paramet-

ric with respect to distribution form. We did not seek to test any parametric distri-

bution model. Rather, we sought to compare two empirical distributions for each

model, one being the dual cue data and the other being the model prediction derived
from the single cue data. In this case, the potential presence of bias in the sample cu-

mulative distribution shapes, relative to their true population shapes, is not relevant.

Under the null hypothesis for each model, whatever shape bias is present will be sta-

tistically identical for the observed and predicted dual cue RT distributions. It is only

the relative shape of the distributions being compared (e.g., whether they crossover)

that is relevant here.

Despite these favorable attributes, our approach does have potential pitfalls.

Most importantly, it requires that any estimated correction factors must be close
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enough to their true values that they will not lead the researcher to an incorrect con-

clusion. In the current case, lDp was of primary concern. We dealt with this issue by

conducting an experiment designed to estimate its value. Though there is no guaran-

tee that that estimate is exact, the likelihood that it is significantly in error, given the

similar estimates drawn from other studies, seems quite low. Note also that, in any
fully parametric model, the dual cue perceptual delay would still need to be dealt

with. It could be treated as a free parameter, but boundary conditions on parameters

are preferred when possible. Thus, our empirically based estimate of lDp should be

just as useful in fully parameterized models as in our models.

Several other corrections, however, appear to be idiosyncratic to our approach.

These include the ES correction derived through simulation (Appendix B), along

with three other bias factors in the LC and chunking models that were discussed

in footnotes. Fortunately, the strong statistical basis for the ES correction, along
with the small magnitude of the potential bias relative to the main effect sizes for

the race, LC, and chunking models, made these correction issues generally non-prob-

lematic. However, this may not be the case when parameter-free models are applied

in other experimental paradigms. In any situation, the vastly decreased model flexi-

bility gained through our parameter-free approach (along with its tendency, in our

view, to focus the researcher on broad theoretical principles), should be weighed

against potential biases built into its assumptions and correction estimates. In the

end, we believe that the strongest conclusions will be achieved through converging
evidence from both modeling traditions.

9.4. Reconciling our results with coactivation and cross-talk results

Although the cue selection models provide a good account of the data from these

experiments, it appears to be at odds with the coactivaton and cross talk results re-

ported in other papers (e.g., Hommel, 1998; Logan & Schulkind, 2000; Miller, 1982).

In an initial effort to integrate these findings, we suggest that a set-cue bottleneck, in
a generalized form, may underlie performance in all of these cases.

First consider the coactivation results observed in go, no-go tasks. In this case,

performance is presumably driven by a rule held active in working memory: ‘‘If the

target (e.g., an A) is detected, make a key press response.’’ We propose that this

single activated rule constitutes the task set. If a target is present, then the rule

condition is met, and in essence a set-cue conjunction is formed at the ‘‘condition

side’’ of this rule in working memory. When two targets are present (e.g., two A�s),
there is still only one active set-cue conjunction, but in this case the two cues both
match the condition side of the rule (a type of chunking effect), presumably

facilitating its execution, and in turn reducing response latency. Thus, facilitation

is observed without violation of the principle that only one set-cue conjunction

at-a-time can mediate performance. The relative facilitation in the identical and

response compatible noise conditions in Eriksen and Eriksen�s (1974) flanker task

can potentially be interpreted within the same framework. There, the condition

side of the rule specifies two potential targets, and the rule fires faster if both

are present.
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Consider next the cross-talk experiments of Hommel (1998). In those experiments,

subjects were presented with a letter and a color cue, combined as a color letter. Sub-

jects were instructed that one of the letter and one of the color cues matched the ab-

stract rule ‘‘left,’’ and that the other member of each stimulus category matched the

abstract rule ‘‘right.’’ They were required to first make a left or right key press re-
sponse for the color cue, and then a German equivalent of a ‘‘left’’ or ‘‘right’’ vocal

response for the letter cue. It is quite plausible that subjects dealt with this task by

categorizing the stimuli according to their output requirements. For example, for

a given subject, the ‘‘H’’ and ‘‘green’’ cues might be grouped as requiring a ‘‘left’’

response, whereas the letter ‘‘S’’ and ‘‘red’’ cues might be grouped as requiring a

‘‘right’’ response. The plausibility of this stimulus grouping strategy derives from

the fact that it reduces the working memory load from four simple rules (e.g.,

H! right, S! left, Green! right, Red! left) to two only slightly more complex
rules (e.g., if H or Green! right, if S or Red! left). By direct analogy to the argu-

ment for coactivation phenomena, the active rule(s) constitute the task set, kept dy-

namically active in working memory. On incompatible trials, the two stimuli activate

different rules. The two rules, requiring different responses, receive one dose of acti-

vation each. As a result, neither rule may fire as fast as it otherwise could, and com-

petition effects may slow rule selection for the first response. In contrast, on

compatible trials, both cues match only one of the two candidate rules on each trial.

That rule gets two doses of activation, potentially facilitating RT. Further, there is
no other activated rule competing to be selected, and thus no interference effect. Fol-

lowing modern central bottleneck theory (for a review see Pashler, 1997), the system

must then reset and initiate second task performance. Relative facilitation occurs for

compatible trials on both tasks 1 and 2 even though only one set-cue conjunction

(i.e., one conjunctive rule condition) is mediating performance. The important point

here is that the cross-talk effects need not reflect independent, parallel flow of activa-

tion from each stimulus directly to its response.

Cross-talk has also been observed by Logan and colleagues. In the Logan and
Schulkind (2000) experiments that were described in the introduction, subjects pre-

sumably had a task set in working memory directing them to match the first task cue

to the appropriate category (in Experiment 1, a letter or number), and then to map

that category to the required key press response. This task set served to prime the

two category nodes. When the cues were presented, activation from each cue pre-

sumably flowed in parallel into its appropriate category representation. The most ac-

tivated category node won a competition and determined the key press response for

the first task. If we interpret a set-cue node broadly in terms of its abstract function,
the winning category node constitutes the active set-cue conjunction for the first task,

with the alternative set-cue conjunction suppressed. If both cues are members of the

same category, their activation combines at the winning set-cue node, facilitating

first task RTs relative to incompatible trials. Again, facilitation is observed even

though only one set-cue conjunction is mediating task 1 (and task 2) performance.

Note that associative independence as we have defined it is violated here and above

due to the converging activation from two cues on a single node at the set-cue level (a

chunking effect).
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In Experiments 3 and 4 of the Logan and Schulkind (2000) study, subjects per-

formed a dual lexical decision task. First task responding was faster if both stimuli

were words. Here again, there is the possibility that the word stimuli activate a gen-

eral pre-existing category for words. If both stimuli are words, two doses of activa-

tion make it the word category node, potentially resulting in faster response latency.
In the Logan and Delheimer (2001, Experiment 1) study of cross-talk effects in ep-

isodic memory, subjects first studied a list of words, and were later presented with

trials consisting of either two words from the list, one word from the list and one

distracter word, or two distracter words. Subjects pressed one key if the first word

was from the list, and another if it was not. Again, first task responding was faster

when both words were from the list than when only the first task stimulus was from

the list. If we assume that this study created a category for the list, to which all ex-

emplars were associated, and if we treat that category as a set-cue conjunction (by
analogy to the previous examples), then a cross-talk effect of a type consistent with

the set-cue model could be observed. Here and above, our claim is not that parallel

processing of some sort is not occurring, but rather that parallel processing under the

case of associative independence, as we have defined it, may not be occurring.

The discussion above makes the general point that the set-cue model, interpreted

broadly, potentially allows for dual cue facilitation in some of the working memory

and categorization tasks studied to date. It also allows for dual cue facilitation after

cue pairs have been presented together a sufficient number of times, as in the current
tasks. Essentially, it says that some type of dual cue chunk which allows for conver-

gence of activation at a single set-cue level nodemust be present for dual cue facilitation

to occur. Cued recall is perhaps the most natural domain in which to test this model,

since it is easy to create new, arbitrary, and hence independent associations in the lab-

oratory immediately prior to the dual cue test phase. It may be possible, however, to

create the same independence conditions in other tasks, in particular working memory

tasks. Research along these lines may be quite useful in the effort to pin down the cog-

nitive architecture underlying dual cue, and more generally dual task, performance.

9.5. Implications for theories of memory retrieval and automatization

Modern theories of the Stroop effect typically assume that the color and word di-

mensions both contribute in parallel to response activation (e.g., Cohen et al., 1990;

Logan, 1980; Phaf et al., 1990; Schooler et al., 1997). These theories should apply to

the current tasks, because they have no built-in mechanisms that are motivated solely

by unique properties of the Stroop task. The fact that we did not find dual cue facil-
itation in Experiments 3–5 appears to constitute a challenge for them (for other chal-

lenges, see Heathcote et al., 1991; Mewhort et al., 1992; Spieler et al., 1996, 2000).

Wenger (1999) concluded in favor of a parallel model of dual cue recall (model 5).

He tested parallel and serial models at a general level, so any of a broad range of

specific parallel model could be consistent with his results. As such, the implications

of the current work for that work are essentially the same as for the class of parallel

models more generally. As noted earlier, Logan�s (1988) instance theory and

Nosofsky and Palmeri�s (1997; see also Palmeri, 1997) ERRW theory do not in their
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current form make predictions for the case of retrieval from two independent cues.

However, the current results appear to set a boundary on the extent to which their

parallel processing assumption might be extended beyond that case. It may be pos-

sible to integrate their models with the set-cue model introduced here. Such integra-

tion would require few if any changes to those models for the case of a single
retrieval from a single cue.

The results are generally consistent with Rickard�s (1997) CMPL model. As noted

earlier, the set-cue conjunction model incorporates two basic principles of that mod-

el. If applied directly to the current tasks, the simulation model described in Rickard

(1997) would predict zero cue-selection latency, and would make predictions that are

equivalent to those of the ES model. It could thus account for the results from about

the last half of practice in Experiments 1 and 4 without modification. The addition of

the chunking mechanism outlined in the discussion of Experiment 2 (i.e., the ES+C
model) should allow that model to account for the facilitation effects toward the end

of the test phase in Experiments 1, 3, and 5 as well. The model would then be able to

fit the steady-state RT data in all experiments. Modification along these lines re-

mains to be implemented, but at present there is no obvious reason to doubt that

it would be possible.

In its current form, however, the CMPL model cannot account for the evidence

that cue selection is roughly random on the first few test blocks. It seems likely that

it could be modified to accommodate that finding, however. If the strengthening
rates of the associative links from the stimulus to the set-cue level were made inde-

pendent of the strengthening rates for links from the set-cue level to the answer level

in the simulation model (Rickard, 1997), then the model should be equivalent to the

RS model at the beginning of practice (for averaged data, the same cue would always

be selected for each cue pair). A transition to efficient selection with practice might

then occur by way of the practice mechanism outlined earlier. The sufficiency of this

proposed modification, however, remains to be demonstrated.

Although CMPL was not developed within the sampling-recovery retrieval
framework common to many memory models, it is worth noting how it might

be integrated with it. Without intending to take a strong theoretical stance on

the matter, we suggest that parallel activation at the set-cue level may be under-

stood as a sampling process, whereas flow of activation from the winning set-

cue node to the response level node may be understood as a recovery process.

CMPL is not competitive with global memory models as a general account of

memory, nor is it intended to be. Rather, it provides a promising account of mem-

ory access constraints in several task domains involving cued recall, aspects of
memory retrieval that will eventually need to be integrated with memory models

that have historically focused on other topics.

9.6. Accounting for interference effects within the cue selection framework: A response

buffer hypothesis

We suspect that, if a Stroop-type design were applied to our tasks (i.e., if sub-

jects were told to attend to only one dimension, and if the cue pairs were neutral,
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congruent, or incongruent), interference would be observed in the incongruent con-

dition, just as in the Stroop task. Such interference would seem to contradict cue

selection models. After all, in the case of cue independence, subjects cannot know

at the time of cue selection whether the cues are congruent or incongruent, so that

stage of processing should be equivalent in congruent and incongruent conditions.
Latencies of the subsequent retrieval stage do not reflect a race, and thus cannot be

affected by congruency status either. Further, if only one cue can be selected at-a-

time, why would subjects not always select the target cue, and make their response

without reference to the to-be-ignored dimension? Alternatively, if subjects cannot

avoid an occasional inadvertent selection of the to-be-ignored cue, the result could

only be an error. No interference, as measured by RT, would be expected by the

cue selection models as developed so far.11

Here we propose one candidate scenario by which an elaborated cue selection
model might be able to account for Stroop-like interference effects for cases of as-

sociative independence (associative independence seems unlikely to hold in the clas-

sic Stroop task, and thus we do not seek to model that task here). The basic

assumption is that of a post-retrieval error-monitoring buffer period. Subjects

can interrupt or delay overt responding after the retrieval stage is completed, if

newly accruing evidence suggests that the first retrieval was executed in error

through the non-target set-cue node. The existence of an error checking mechanism

is consistent with many people�s subjective experience with the Stroop task, as well
as with other commonly learned tasks (e.g., single-digit multiplication). There are

at least three sources of information that could modulate the latency of a response

buffer period. First, at a general task level, subjects could adjust the buffer latency

depending on the perceived likelihood that the first retrieved response might be an

error, in conjunction with the importance of accuracy in task performance. Thus,

the buffer period provides a foundation for task level speed–accuracy trade-off

effects.

Other factors might modulate the buffer latency at the trial level. Here, it is as-
sumed that on some trials subjects inadvertently select the non-target set-cue node

first. On some of those trials, this might result in an overt error. On other trials,

the buffer mechanism might suppress overt responding and instead wait for re-

trieval through the other cue. Two sub-mechanisms might be involved in this sup-

pression of overt responding. First, the system may be able to detect a mismatch

between the target cue given the task-set (e.g., ‘‘retrieve through the color cue’’)

and the cue through which the first retrieval is actually being executed. We will

term this a set-cue mismatch. If such a mismatch is present, then a signal may
be sent to increase buffer latency so that a second retrieval, from the target cue,

can be executed in a sequential fashion (thus obeying the set-cue bottleneck). Sec-

ond, the system may continuously monitor response activation within the set of
11 In the case of one versus two cues, however, dual cue interference resulting in slowed RTs is possible

at the cue selection stage of processing (i.e., if cue selection latency is greater than zero).
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viable candidate responses. If a second retrieval is initiated, perhaps automatically,

after the first retrieval is completed (but before the response for the first retrieval is

executed), and if the second retrieved response is different from the first (i.e., on

incongruent trials) then this detector might become activated. The buffer period

could then be extended to allow for evaluation of the second candidate response.
Hence, RT interference effects could be generated in the incongruent condition by

both a set-cue mismatch detector and a response level detector, resulting in slowed

RTs. In the congruent condition, the set-cue mismatch detector would trigger if the

non-target cue is selected first, extending the buffer period. The response level de-

tector would not trigger, however, since the same response would be activated by

both cues. If the two cues have identical or similar RT distributions, then the result

will be slowed RTs on this subset of trials, compared to a hypothetical true neutral

condition. However, if retrieval through the non-target cue is significantly faster
than retrieval from the target cue, as in the Stroop task for example, then whether

or not interference would be observed would depend on whether the RT saving

due to inadvertent first retrieval through the faster cue is offset by the increased

buffer latency resulting from the set-cue mismatch. As such, the buffer model is po-

tentially consistent with findings of facilitation, no facilitation, or even interference,

in a congruent compared to neutral condition. This model, while speculative, seems

quite plausible as an account of at least one source of interference effects in such

tasks, and it has the unique advantage of accommodating the evidence favoring
cue selection in the current study.

The error monitoring mechanism proposed above might be related to the inter-

rupt mechanism in the stop signal paradigm (for a review, see Logan, 1994). In that

paradigm, subjects are presented with a cue to perform a simple task, and on some

trials they are presented with a stop signal prior to making their response. The error

monitoring signals proposed above are directly analogous, with the only obvious ex-

ception being that they are triggered by endogenous factors.

The discussion above shows that the crucial factor in differentiating between cue
selection and parallel models is not with respect to interference, but rather with re-

spect to facilitation. In their purest forms, neither class of models predicts RT in-

terference. In Logan�s (1988) instance theory, for example, no RT interference

would be expected. Stroop-type interference can only be generated by elaborating

on the fundamental instance theory architecture, as in the case of Nosofsky and

Palmeri (1997; Palmeri, 1997). Similarly, the cue selection interference account sug-

gested above constitutes an elaboration on the basic cue selection class of models,

which of themselves predict no RT interference for Stroop-like tasks. On the other
hand, predictions about facilitation go to the heart of each framework. The cue

selection framework predicts that the presence of two or more cues cannot facili-

tate performance beyond the ES boundary at any point on the distribution, pro-

vided only that those cues are independent. In contrast, parallel models are

consistent with dual cue performance below the ES boundary and they generally

predict dual cue RT distribution shapes having far less skew than was observed

in the data. On these grounds, the evidence now favors the cue selection class of

models.
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Appendix A

The following experiment was conducted to estimate lDp. Either one or two letters

were presented on each trial, using a trial-level presentation procedure identical to

that of Experiment 1. The task was to determine whether the target letter ‘‘R’’
was present. If an R was present, subjects pressed the ‘‘M’’ key on a standard key-

board. Otherwise, they pressed the ‘‘V’’ key. For one-half of the trials (crossed with

the manipulation of number of letters presented) the target was present once, and for

the other half it was absent. The non-target letter stimuli were: M, L, C, K, F, W, S,

Q, Z, G, O, A, P, B, D, and T. The first 12 of these were stimuli in Experiments 1 and

2, the last four were filler stimuli to increase feature overlap between the target letter

and the set of non-target letters. Stimuli having these four letters were always paired

together on dual cue target-absent trials and were excluded from the analyses. Note
that each feature of the letter R, as defined within the Gibson (1969) system, is pres-

ent in at least two of the non-target letters, a property that should render a feature-

based search strategy ineffective.

Each of 19 subjects performed a total of 640 trials over 5 practice blocks. They

were allowed to take a brief rest after each block. Each block contained 128 trials,

including 32 target-absent dual cue trials, 32 target-present dual cue trials, 32 tar-

get-absent single cue trials, and 32 target-present single cue trials. For each dual

cue item, each cue was on the left in 50% of the trials, just as in Experiment 1. Pre-
sentation order within each block was random.

In the target-absent conditions, subjects must exhaustively search (i.e., in the two

letter case, they must test both letters for the presence of R) to achieve high accuracy.

The mean RT slowing in the two-letter target-absent case, relative to the single letter

target-absent case, thus provides an estimate of the sum of lDp and the time required

to perform the detection task for one additional letter. It is probable that the addi-

tional detection task in the two-letter case constitutes a non-trivial proportion of any

observed RT difference. Thus, this difference can be seen as providing an estimate of
the upper bound value for lDp.

Overall accuracy was 96%. Because each of the three major features of the target

letter were present in at least two of the 16 non-target letters, best case accuracy of a

feature-based search strategy should not exceed 87.5%. Error trials were eliminated

from all analyses below.

Of primary interest were the RT results for the one and two letter target-absent

conditions. RT means and standard deviations (SDs) were first computed for each

of the four cells of the design (crossing target status [present or absent] and number
of letters) separately for each block and for each subject. Thus, for each subject, a

total of 20 means and SDs were computed (four per block). These means and SDs

were then averaged over other variables, as appropriate, in the following analyses.

The grand mean for each block, averaged over all other variables, decreased from

550ms on the first block to 491ms on the fifth block. A one-way within-subjects

analysis of variance, performed on the subject-level grand means for each block,

confirmed this effect, F ð4; 18Þ ¼ 6:46, p > :001. Subsequent analyses, however,

showed that the differences in the RTs and SDs for the critical one- vs. two-letter
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target-absent conditions did not vary systematically over blocks. Thus, data were av-

eraged over blocks in the subsequent analyses.

The grand mean RTs (i.e., averaged over blocks and subjects) for the four cells

defined by target status and number of letters were 468 and 514ms for the single

and dual letter target-present conditions, respectively, and 504 and 525ms for the
one and two letter target-absent conditions, respectively. The critical result was

the 20.5 difference in mean RTs for the single vs. dual letter cells in the target-absent

condition. The median difference was 18.7ms. The difference in mean SDs for the

single vs. dual letter cells in the target-absent condition was 2.1ms, and the median

difference was .98. We addressed the statistical significance of these effects by first

computing, for each subject, the difference score between the one and two letter tar-

get-absent conditions for the means, medians, and SDs. These subject-level difference

scores were then tested against the null hypothesis of zero, using both one-sample t
tests and sign tests on the median. For the RT difference, the 20.5ms slowing was

highly significant, as measured by both the t test, tð18Þ ¼ 4:78, p < :001, and the sign

test,M ¼ 7:5, p < :001. For the SD difference, however, the effect was not significant,

tð18Þ ¼ :79, p > :2, and M ¼ �:5, p > :2. The standard error for the RT difference

scores was 4.29ms, and that for the SDs was 7.35ms.

The mean lDp estimate of 20.5ms is remarkably similar to the roughly 20ms esti-

mate indicated by the Pashler and Badgio (1985) study. In that study, the task was to

search for the largest digit in a multi-element display. By design, that task assures that
subjects are not using a visual feature search to find the target. In the current exper-

iment, we created an analogous condition by assuring that subjects could not obtain a

high level of accuracy using any known feature strategy. It seems very unlikely that

subjects used such a strategy. If they did, it is unclear why the difference scores were

not smaller than in the Pashler and Badgio study. An account based on task differ-

ences is untenable. If anything, the perceptual requirements of their tasks were greater

than those of our tasks (e.g., their tasks required substantial visual search, whereas in

ours subjects were always pre-cued about letter location, which never varied, and
number perception is surely no more automatized than letter perception). The quite

palpable subjective experience of both the authors and a few students who were infor-

mally interviewed was that judgments were based on letters rather than on features.

Based on these results, we set the mean of lDp to a value of 20ms in Experiments 1

and 2, which employed dual letter cues. There was no statistical difference in the SD�s
for the single and dual letter target-absent conditions. As such, we treated lDp as a con-

stant rather than as a stochastic component in the distribution fits. Given the fact that

the coefficient of variation, r=l, is usually less than .2 for simple cognitive tasks, the
standard deviation of lDp seems unlikely to be more than about 5ms, and such a small

effect would be negligible relative to the RTs and SDs observed in the retrieval data.
Appendix B

The method for obtaining the efficient selection (ES) prediction outlined in the in-

troduction presumes that the sample means for each pair of cues always have the
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same magnitude ordering as do their underlying population means. If this assump-

tion is not violated, then the obtained ES prediction will be unbiased. However, since

the sample mean fluctuates around the population mean, there are bound to be some

errors in identifying the cue with the faster population mean using that approach.

Consider a cue pair in which each member has the same population mean. The best
(least variable) estimate of the ES mean for that cue pair is the average of the RTs for

the two cues (in this special case, the ES and RS models make identical predictions).

However, in the sample data, inevitably one mean will be smaller than the other,

sometimes substantially so, even if the population means are the same. If the cue

with the smaller sample mean is then selected for the ES prediction, then the ES pre-

diction for that particular item will be too fast. Since the method always selects the

cue with the minimum mean, this bias will always have the effect of under-predicting

the ES mean, never of over-predicting it.
The way to avoid this biasing is to only eliminate the slower cue for cue pairs in

which the difference between the sample means is sufficiently large that the sample

cue mean RTs are unlikely to be reversed relative to the population values. However,

if this criterion difference is made too large, then the reverse bias will be obtained,

leading to an efficient selection RT estimate that is too large. This problem can be

framed more precisely in terms of t tests performed on the sample means of each

cue pair, collapsing over test blocks. If the value of the obtained t score is close to

zero, then there is a good chance that the faster sample mean is faster simply because
of random sample variation. In these cases, data from both cues should be included

in the efficient selection estimate to avoid biasing that estimate to be too fast. On the

other hand, when the absolute value of the t score is large, then there is likely to be a

real population difference between the two cues, and removal of the cue with the lar-

ger mean is necessary to avoid the ES estimate being biased to be too slow. The key

to finding an unbiased ES estimate can thus be stated as a problem of finding the

correct t threshold for deciding whether or not to eliminate the slower cue. An ab-

solute threshold of 1.0 is a reasonable candidate, since it is what is expected on av-
erage when differences between sample means are due to purely random factors.

To find the correct t threshold value, we executed the following simulation. First,

we specified a population distribution for each of 192 simulated single cue items, 12

items for each of 16 simulated subjects. For simplicity we assumed normal distribu-

tions for all simulated cues. We set the means and variances of those distributions so

that, as a group, they roughly matched the means and variances of the observed sin-

gle cue RTs (calculated over practice blocks) in Experiment 1.We did this simply to

assure that the RTs in the simulated data were close, on average, to the RTs in the
actual data. However, there is no reason to suspect that the outcome is dependent on

this procedure.

Next these 192 distributions were randomly assigned into 96 pairs. Twenty obser-

vations were then randomly drawn from each cue distribution, and two sample t tests
were conducted for each cue pair to determine the absolute value of t for that cue

pair. We then selected a positive t threshold value (starting at zero and working

up in increments of .01), applied it to the absolute value of the t score for each

cue pair, and eliminated the slower cue of a pair only if that t value was greater than
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the t threshold value. On each iteration through t, we computed the ES grand mean

prediction for the entire simulated experiment and compared it to the known popu-

lation ES grand mean (i.e., the mean of the population means of the 96 simulated

cues that had a smaller mean than their companion cue). We iterated through this

process until the t threshold was found that provided the best match to the known
ES value of the population. This entire process was repeated 50 times, yielding a dis-

tribution of 50 t threshold values. The mean of that distribution was 1.001, with

a standard error of .01. We applied this absolute threshold value of 1.0 in all five

experiments.

In all cases the procedure used on the data was identical to that described above,

with the exception that a paired t test was performed on the difference scores for each

cue pair computed on each test block, instead of a two-sample t test. This test was
more appropriate for the experimental data since the factor of test block accounted
for significant variance in the RTs. The slower cue of each cue pair with an absolute t
value greater than 1.0 was then removed prior to calculation of the ES prediction.
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